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a b s t r a c t

The analysis and interpretation of datasets with large number of features and few examples has
remained as a challenging problem in the scientific community, owing to the difficulties associated with
the curse-of-the-dimensionality phenomenon. Projection Pursuit (PP) has shown promise in circum-
venting this phenomenon by searching low-dimensional projections of the data where meaningful
structures are exposed. However, PP faces computational difficulties in dealing with datasets containing
thousands of features (typical in genomics and proteomics) due to the vast quantity of parameters to
optimize. In this paper we describe and evaluate a PP framework aimed at relieving such difficulties and
thus ease the construction of classifier systems. The framework is a two-stage approach, where the first
stage performs a rapid compaction of the data and the second stage implements the PP search using an
improved version of the SPP method (Guo et al., 2000, [32]). In an experimental evaluation with eight
public microarray datasets we showed that some configurations of the proposed framework can clearly
overtake the performance of eight well-established dimension reduction methods in their ability to pack
more discriminatory information into fewer dimensions.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the last few decades we have witnessed a rapid development
and refinement of data acquisition technologies in several science
and industrial areas [1]. This has led to the emergence of high-
throughput technologies that are capable of generating datasets
with the number of features (p) far greater than the number of
examples (n), the so-called large p small n datasets. A representa-
tive example of these technological developments is the micro-
array technology [2], which has made possible the measurement
of expression levels of thousands of genes in a relatively rapid
and economic way, leading to significant advances in the under-
standing of severe diseases, like cancer, and raising hopes on
possible cures [3,4].

Though the collection of large p small n datasets is nowadays a
common practice in many fields, their analysis and interpretation
is still a challenging task [5,6,1]. This difficulty is mainly originated
by the so-called “curse of dimensionality” phenomenon, inherent
in such a kind of data [7]. This phenomenon states that as the
dimensionality increases, the corresponding space becomes emp-
tier and the data points tend to be equidistant. This generates

detrimental impacts in most machine-learning and pattern-recog-
nition methods (including model-estimation instability, model
over fitting and local convergence), compromising the general-
ization performance and reliability of such methods [5,6].

A common approach to circumvent the curse of dimensionality
is by reducing it [6]. Two kinds of methods exist for this task:
feature selection (FS) [8,9] and feature extraction (FE) [10,11].
The former methods try to find small subsets of original features
that are relevant to the intended analysis. The latter methods
reduce the dimensionality by building new features from combi-
nations (linear or nonlinear) of the original features. FS has the
benefit of keeping the original feature meaning, facilitating the
interpretability by the domain expert [9]. However, it has been
said [12] that FE is preferable over FS when the final goal is an
accurate system for classifying new examples and interpretability
is not as important. This is because FE is not tied to the original
feature space, providing greater chances of finding more useful
representations for the desired task [12].

Projection pursuit (PP) [13,14] is a FE method that has been
successfully applied in several domains for both supervised and
unsupervised analyses (e.g. [15–18]). PP seeks low-dimensional
linear projections of the data that expose interesting aspects
of them. To this end, a measure of “interestingness” is employed,
which is known as projection pursuit index (PP index). A key
advantage of PP is its flexibility to fit different pattern recognition
tasks, depending on the PP index used. For example, PP can be
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used to perform clustering analysis [19,20], classification [21–24],
regression analysis [25] and density estimation [26] (some reviews
of PP indexes can be found in [21,27,28]). Another advantage
of PP is its out-of-sample mapping capability, that is, the possibi-
lity to map new examples in the projection space after the con-
struction of it.

Despite the aforementioned advantages, the literature shows a
limited use of PP in large p small n datasets, like those generated by
microarray technology. This may be due to the high computational
difficulty in finding optimal projection spaces for such cases.
For instance, the projection of a dataset with p¼10k features
(a realistic number in microarray datasets) onto a target space of
dimension m¼3 will require the optimization of a projection
matrix of p�m ¼ 30k elements. Evidently, the problem worsens
as p or m increase. Traditional PP optimizers based on the
gradients or Newton methods [29–31,19] are usually inadequate
for such a kind of data due to the vastness of possible projections
and, thus, the high susceptibility to find poor local optima [14].
More global PP optimizers were described recently, including
genetic algorithms (GA) [32,33], simulating annealing (SA) [21],
random scan sampling (RSSA) [34] and particle swarm optimiza-
tion (PSO) [35]. However, none of these works have been directly
applied in dimensionalities as high as those found in microarray
data, which shows the difficulty of applying PP in such scenarios.

In this paper we present a framework to facilitate the applic-
ability of PP on large p small n datasets with the aim of classifica-
tion tasks. The framework is formed by two main stages (Fig. 1): a
compaction stage and a PP optimization stage. The first stage is
devised to rapidly transform the original data into a less sparse
representation. The second stage is the PP part, which is respon-
sible to find optimal projections taking the compacted representa-
tion as input.

For the compaction stage we use three well-known techniques:
PCA, Whitening and Partial Least Squares. For the PP stage, we
adopt the Sequential Projection Pursuit (SPP) approach [32]
coupled with the GA optimizer (PPGA) we described recently
[33], in which a specialized crossover operator showed excelling
search capabilities. An experimental study is presented over eight
public microarray datasets. The evaluation systematically tested
several configurations of the framework, including variations of
the compaction method, the PP index function and the target
dimensionality. We used the predictive accuracy of two popular
classification methods (LDA and 3NN) in order to assess the quality
of the tested configurations. We also compare the framework
against eight well-established dimension reduction methods,
including FE and FS methods.

The paper is organized as follows. Section 2 introduces some
important concepts of PP, SPP, PP optimization and PP indexes
used in the paper. Section 3 describes the proposed framework.
Section 4 presents the experimental evaluation, including the
experimental setup, results and corresponding discussion. Finally,
our conclusions are presented in Section 5.

2. Projection pursuit

The projection pursuit (PP) concept was formally introduced in
the paper of Friedman and Tukey [13], although the seminal ideas
were originally posed by Kruskal [36]. To describe the PP concept
we assume that we have a data matrix X of n� p dimensions,
where n is the number of data examples or observations and p is

the number of attributes or variables. PP can be defined as the
constrained optimization problem in (1), where the aim is to seek
a m-dimensional projection space ðmopÞ (defined by the bases –

columns – of A¼ ½a1;…; am�ARp�m) such that the projected data
points in that space maximize a pre-defined objective function I,
called the projection pursuit index. This function measures the
degree of interestingness of the projected data. The constraint
of orthonormality in A is necessary to ensure that each dimension
in the target space shows different aspects of the data:

An ¼ arg max
A

fIðXAÞg

s:t AT � A¼ I: ð1Þ

2.1. Sequential projection pursuit

Sequential projection pursuit (SPP) [32] solves the PP problem
in (1) by decomposing it into a sequence of m optimization
problems, each computing one base in A.

The first base, a1, is obtained by searching a p-dimensional
unit-length vector where the projected data Xa1 maximizes the
one-dimension PP index I. Once a1 is found, SPP tries to remove
all the information captured in that direction from the original
data in order to avoid finding the same projection direction in
subsequent iterations. For this task, the original SPP uses a
“structure removal” procedure [14], which “Gaussianize” the data
in the found direction, as follows: X¼X�Xa1aT1. The next base a2
is sought taking the updated X (also called residual data) as input
data, subject to the constraint that a2 is orthogonal to a1. The
process is iteratively repeated until all m bases are obtained.

2.2. PP optimization

A key component in PP is the optimization process. Early
approaches in this respect were based on the gradient techniques
[30,29] and Newton–Raphson [31,37,14,13], where the projections
are performed in at most three dimensions for visual exploratory
tasks, the so-called exploratory projection pursuit (EPP). Further
developments focused on developing more global methods for PP
optimization, such as random search [38,39,29], genetic algorithm
(GA) [32], random scan sampling algorithm (RSSA) [34], simulated
annealing (SA) [21], particle swarm optimization (PSO) [35] and
tribes [40]. In a previous work [33] we describe PPGA, a GA
optimizer with a specialized crossover operator that often showed
to find solutions better than those found by PSO, RSSA, and SA
when used inside the SPP framework, reason why it is adopted for
the present work.

Another important aspect in optimizing PP is how to ensure
that each resulting dimension is associated with a different and
complementary aspect of the data. Many PP methodologies,
including SPP, address this task by using the “structure removal”
procedure. However, it has been observed [41,38] that the succes-
sive application of this procedure (as done in the original SPP) may
lead to data distortions, implying that an optimum found in
residual data may not be longer related to any relevant aspect of
the original data. Recently, Zhang and Chan [41,28] proposed
an alternative approach to structure removal, which uses the
orthogonal complement space concept.1 In those works, the residual
data is obtained projecting the current data onto the orthogonal
complement of the found projection vector, which avoid data
distortions and also ensures orthogonality of the projection bases.

Fig. 1. Framework WSPP.

1 The orthogonal complement of one vector xARn is the vector space y, all of
which are orthogonal to x. Therefore, such space can be expanded by n�1 vector
basis. That is, the orthogonal space of a vector x n-dimensional is always
dimensional size n�1.
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