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The classical ridge regression technique makes an assumption that the noise is Gaussian. However, it is
reported that the noise models in some practical applications do not satisfy Gaussian distribution, such
as wind speed prediction. In this case, the classical regression techniques are not optimal. So we derive
an optimal loss function and construct a new framework of kernel ridge regression technique for general
noise model (N-KRR). The Augmented Lagrangian Multiplier method is introduced to solve N-KRR. We
test the proposed technique on artificial data and short-term wind speed prediction. Experimental
results confirm the effectiveness of the proposed model.
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1. Introduction

Regression techniques are widely used in stock price predic-
tion, marketing analysis, power consuming prediction, wind speed
forecasting, etc. Although these techniques have been successfully
applied in various domains, new challenges and problems are still
reported in some practical applications. This topic is attracting
much attention from application and research areas these years
[1-3].

We first introduce some notations. Given a set of training data
Dy ={(X1,Y1): (X2.¥2)s ... (X, y)}, where x;eRLy,eRi=1,2,..,L
A multivariate linear model is f(x)=w -x+b, where weR.,
b e R. The task of Ridge regression is to learn the parameter vector
w and parameter b, by minimizing the objective function

1 I
gRR=§'0)T'CU+C'.Zl(yi—wT'X—b); (1
i=

Ridge regression is a method of linear regression that imple-
ments a sum-of-squares error function together with regulariza-
tion, thus controlling the bias variance trade-off [4,5]. It aims at
discovering a linear structure hidden in the original data [6-9].
Meanwhile, nonlinear mappings may be estimated by kernel ridge
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regression [10-12], an extended version of linear ridge regression
with kernel tricks. A nonlinear ridge regression model is con-
structed in a feature space H (the nonlinear kernel mapping
@ : R'—H, where H is the Hilbert space), induced by the non-
linear kernel function K(x;,x;) = (P(x;) - P(x))), (DP(x;) - D(x))) is the
inner product. The kernel mapping @ may be any positive definite
Mercer kernel. So the objective function minimized in kernel ridge
regression can be written as

1 I
gKRsz'wT'w"'C"Zl(yi—wT'¢(X)_b)2~ 2
1=

In recent years, kernel ridge regression (KRR) is gaining
popularity as a data-rich nonlinear forecasting tool [3,6,8-11],
which is applicable in many different contexts [12-14], such as
economic field, machine learning, and especially optical character
recognition.

In 2000, Suykens et al. [15-18] proposed kernel ridge regres-
sion model with Gaussian noise (GN-KRR, also known as least
squares support vector regression, LS-SVR). We know that this
technique is able to find the optimal model if the errors are
Gaussian. However, it was reported that the noise in some real-
world applications, just like wind power forecast and direction-of-
arrival estimation problem, does not satisfy Gaussian distribution,
but Beta distribution, Laplace distribution, or other models. In this
case, the classical regression techniques are not optimal. Despite
the fact that most works on wind power forecast assume a normal
distribution function to represent the probability density function
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Fig. 1. Laplacian PDF, Gaussian PDF and Beta PDF of parameters.

(PDF) of the prediction error, in [19], a more comprehensive
proposal modeling that PDF as a Beta function is justified. Fabbri
et al. believed that Beta distribution function is more appropriate
to fit the error than the standard normal distribution function of
wind power forecast. Bludszuweit et al. [20] showed the advan-
tages of using Beta PDF for approximating the error distribution on
wind power forecasting instead of the Gaussian PDF. The error €
obeys the Beta distribution in the forecast of wind power, and the
PDF of € is f(e)=€™~1.(1—€)""! . h,e e(0,1), where m and n are
two parameters (m>1,n>1), h is the normalization factor
[21-23] (Laplacian distribution, Gaussian distribution and Beta
distribution for different parameters are shown in Fig. 1). Zhang
et al. [24] and Randazzo et al. [25] presented the estimation model
under a Laplacian noise environment in the direction-of-arrival of
coherent electromagnetic waves impinging estimation problem.
Laplacian distribution is frequently encountered in various
machine learning areas [26,27].

Based on the above analysis, we know that the error distribu-
tions do not satisfy Gaussian distribution in some application fields.
We know that different loss functions should be derived for
different noise models. Squared loss is fit for Gaussian distribution,
and absolute loss is good for Laplacian distribution. We system-
atically discuss the optimal loss functions for different noise models.

It is not suitable to apply the kernel ridge regression with
Gaussian noise (GN-KRR) to fit functions from data with non-
Gaussian noise. In order to solve the above problems, we derive a
general loss function and develop a new framework of kernel ridge
regression models for the general noise (N-KRR). Finally, we design
an algorithm to find the optimal solution to the corresponding
regression tasks. While there are a large number of implementa-
tions of KRR algorithms in the past few years, we introduce the
Augmented Lagrangian Multiplier method, presented in Section 3.
If the task is non-differentiable or discontinuous, the sub-gradient
descent method can be used [28].

The main contributions of our work are listed as follows: (1) we
derive the optimal loss functions for different noise models; (2) we

develop a new framework of kernel ridge regression technique for
the general noise model; (3) the Augmented Lagrangian Multiplier
method is applied to solve the proposed model, which guarantees
the stability and validity of the solution; (4) we utilize the kernel
ridge regression model for Beta noise (BN-KRR) to short-term wind
speed prediction and show the effectiveness of the proposed
model in practical applications.

This paper is structured as follows. In Section 2, we obtain the
optimal loss function and construct a kernel ridge regression
machine for the general noise model (N-KRR). Section 3 gives
the solution and algorithm design of N-KRR. Numerical experi-
ments are conducted on artificial data and short-term wind speed
prediction in Section 4. Finally, the conclusions are drawn in
Section 5.

2. Kernel ridge regression for general noise model

Kernel ridge regression can be understood as a function
approximation technique. A key issue in developing a regression
technique is to derive an optimal objective for the general noise
model. Given a set of noisy training samples D, we require to
estimate an unknown regression function f{x). We assume that the
noise is additive:

yi=fxp+e (i=1,2..,0D, 3

where e; is the error, and we assume that the observations are
drawn in independent and identical distributed (i.i.d.) with P(e;) of
standard deviation ¢ and mean y. The objective is to estimate the
function f{x) with the data set D; = D,.

Following [29-31], the general approach is to minimize

l
HIfl= 3 cep+2: 1) 4

where c(e;) = c(y; —f(x;)) is a loss function, A is a positive number
and P[f] is a smoothness functional.
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