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a b s t r a c t

For the multi-agent community, one of the key challenges is the agents operating in open environments,
in which stochastic noises affect the dynamics of agents. This paper deals with the leader-following
consensus problem for a class of linear multi-agent systems model with randomly occurring nonlinea-
rities and uncertainties, and stochastic disturbances. The communication topology is assumed to be
undirected and fixed. The stochastic Brownian motions are used to describe the source of extrinsic
disturbances. The randomly occurring nonlinearities are introduced to describe the nonlinear intrinsic
dynamics occurring in a probabilistic way. The randomly occurring uncertainties are adopted to reflect
more realistic dynamical behaviors of the agent systems that are caused by noisy environment. Sufficient
conditions are derived to make all follower agents asymptotically reach the state of leader in the mean
square sense. Simulation results illustrate the theoretical results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The problem of consensus for multi-agent systems has
attracted compelling attention over the last ten years due to its
extensive applications in real-world distributed computation,
rendezvous tasks, spacecraft formation flying, biological systems,
sensor networks, cooperative surveillance and so on [1–4]. Con-
sensus means the agreement of a group of agents on their
common states via local interactions. Consensus of multi-agents
or synchronization of complex dynamical networks [5–8], which is
tightly related to the Lyapunov stability theory, has been attracting
great interest in the scientific community. Some other relevant
topics for multi-agent systems have also been addressed, such as
group consensus [9], finite-time consensus [10], consensus con-
trollability, observability [11], consensus of multi-agent systems on
time scales [12], and consensus of fractional-order heterogeneous
multi-agent systems [13].

A particularly interesting topic is the consensus of a group of
agents with a leader, where the leader is a special agent that
specifies the objective for the whole group. Such a problem is
commonly called leader-following consensus problem [14–20].

Compared with its counterpart-leaderless cases, leader-following
configuration is an energy saving mechanism, which was found in
many biology systems, and it can also enhance the communication
and orientation of the flock [16].

Many works on consensus problem focus on the case where the
dynamics of each agent is single-integrator or double-integrator
[10,21–25], or even a more general case: an nth order linear
system [16,26–28] described by the differential equations:

dxiðtÞ
dt

¼ AxiðtÞþBuiðtÞ; ð1Þ

where xi is the state of agent i and ui is the control input. Two
matrices A and B with compatible dimensions are assumed that
the pair (A, B) is stabilizable. However, in reality, mobile agents
may be governed by more complicated intrinsic dynamics.
In recent five years, some authors have considered the consensus
problems with nonlinear agent dynamics [22–25]. The authors [22]
investigated the consensus problem for the second order multi-
agent systems by introducing a nonlinear term describing the
intrinsic dynamics of each agent based on algebraic graph theory,
matrix theory, and Lyapunov control approach. The work of [22]
was extended to the leader-following case via pinning control in [23].
Both local and global consensus are investigated for cooperative
agents with nonlinear dynamics in a directed network [24]. The
design of distributed control gains for leader-following consensus
in multi-agent systems with second-order nonlinear dynamics is
proposed in [25].
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In the networked world nowadays, the nonlinear intrinsic
dynamics may be subject to random changes in environmental
disturbances, for instance, network-induced random failures and
repairs of components and sudden environmental disturbances.
Therefore, nonlinear dynamics may occur in a probabilistic way
with certain types and intensity, which is particularly true in a
networked environment. Very recently, the randomly occurring
nonlinearities (RONs) have been introduced into the model of
complex networks for synchronization [29,30], state estimation [31],
stability [32] and control problem [33]. However, RONs are not
taken into account when modeling multi-agent networks for the
consensus problem. On the other hand, the agents that operate in
open environments will have to cope with a tremendous amount
of uncertainty, due to limited computational and communication
resources. Kim et al. [28] studied the output consensus of linear
multi-agent systems (1) with the introduction of parameter
uncertainties in matrix A. A new type of uncertainties called as
randomly occurring uncertainties (ROUs) has been proposed by
Hu et al. [33] due to the fact that the uncertainties may be subject
to random changes in environmental circumstances. To the best of
our knowledge, ROUs have not yet attracted adequate research
attention in multi-agent systems.

Recently, some initial works have been made on the second-
order consensus problem for multi-agent systems with exogen-
ous disturbance [34,35]. The deterministic disturbances are
generated by a linear exogenous system [34], or from some
nonlinear exogenous systems [35]. In these two works, the external
disturbance is assumed to be exactly known a priori or precisely
observable, which seems not to be practical. In order to avoid this
limitation, we use stochastic disturbances in this paper to model the
external disturbances which are widely existed in practical processes.

Motivated by the above discussion, the principal focus of the
present study is to propose a new type of nth order linear multi-
agent systems model with RONs, ROUs and stochastic disturbances
and then to study its leader-following consensus problem. The rest
of this paper is organized as follows. In Section 2, some basic
notations and useful results of the graph theory are reviewed. In
Section 3, we show that the leader-following consensus for the
linear multi-agent systems with RONs, ROUs and stochastic dis-
turbances can be achieved via the proposed control protocol.
Simulation results are given in Section 4 to validate our control
laws and a brief conclusion is made in Section 5.

2. Preliminaries and problem formulation

2.1. Basic definitions and notations

We use a graph to represent the communication topology or
information flow between agents and the leader. The interaction
topology of information flow between N agents is described by a
directed graph G¼ ðV; EÞ, where V ¼ f1;2;…;Ng is the set of
vertices representing N follower agents and E � V � V is the set
of ordered edges of the graph. An ordered edge of G is denoted by
(i, j), representing that agent i send information to agent j. The
graph is undirected, that is, the edges (i, j) and ðj; iÞ in E are
considered to be the same. Neighbors of node i are the set
N i ¼ fj : ðj; iÞAEg. A path is a sequence of edges of the form
ði1; i2Þ; ði2; i3Þ;… . A graph is connected if any two distinct nodes
of the graph are connected through a path that follows the
direction of the edges of digraph [2]. The leader is represented
by vertex 0 sending the information to the follower agents which
are neighbors of the leader. Then, we have a graph G , which
consists of graph G, vertex 0 and edges between the leader 0 and
its neighbors. Throughout this paper, graph G is assumed to be
undirected and the edges ð0; iÞ of G are directed.

The adjacency matrix A of a graph G on vertex f1;2;…;Ng is an
N�N matrix, whose ðijÞth entry aij is defined as aii ¼ 0, aij ¼ aji ¼ 1
if ði; jÞAE and aij ¼ aji ¼ 0 otherwise. The Laplacian matrix L¼
ðLijÞN�N of G is defined by Lii ¼∑N

j ¼ 1;ja iaij and Lij ¼ �aij for ia j.
The structure of G is described by a matrix H¼LþD, where
D¼ diagfb1; b2;…; bng with bi¼1 if ð0; iÞ is an edge of G , and with
bi¼0 otherwise, and H¼ ðhijÞN�N with

hij ¼
Liiþbi; i¼ j;

Lij; ia j:

(
ð2Þ

For more details, one can see [11,16,27].
Throughout this paper, Rn and Rm�n denote, respectively, the n

dimensional Euclidean space and the set of all m�n real matrices.
P40 means that matrix P is symmetric, real and positive definite.
I and 0 denote the identity matrix and the zero matrix with
compatible dimensions, respectively. diagf⋯g stands for a block-
diagonal matrix and trfAg denotes the trace of matrix A. λmaxðAÞ
and λminðAÞ mean the largest and the smallest eigenvalue of matrix
A, respectively. The superscript “T” denotes matrix transposition
and the asterisk “n” in a matrix is used to represent the term that
is induced by symmetry. The Kronecker product of matrices
AARm�n and BARp�q is a matrix in Rmp�nq and denoted as
A � B. ðΩ;F ;PÞ is a complete probability space with a filtration
fF tgtZ0 satisfying the usual conditions (i.e., the filtration contains
all P�null sets and is right continuous) and Ef�g stands for the
mathematical exception operator with respect to the given prob-
ability measure P. Sometimes, the arguments of a function will be
omitted in the analysis when no confusion arises.

2.2. Models and consensus algorithms

Taking RONs, ROUs and stochastic disturbances into considera-
tion, the agent model (1) can be described by

dxiðtÞ
dt

¼ AðtÞxiðtÞþαðtÞf ðt; xiðtÞÞþBuiðtÞþσiðt; xiðtÞÞnðtÞ; i¼ 1;2;…;N

ð3Þ
where N is the number of follower agent, xiARn is the agent i's
state, and uiARq is agent i's input which can only use local
information from its neighbor agents. σið�; �Þ : R� Rn-Rn is the
noise intensity function vector. n(t) is a scalar zero mean Gaussian
white noise process. Recall that the time derivative of a Wiener
process (Brownian motions) is a white noise process. We have
dwðtÞ ¼ nðtÞ dt, where w(t) is a one-dimensional Wiener process
defined on ðΩ;F ;PÞ satisfying
EfwðtÞg ¼ 0; Ef½wðtÞ�2g ¼ dt: ð4Þ
Hence, system (3) can be rewritten as the following stochastic
differential equations:

dxiðtÞ ¼ ½AðtÞxiðtÞþαðtÞf ðt; xiðtÞÞþBuiðtÞ� dtþσiðt; xiðtÞÞ dwðtÞ: ð5Þ
In this paper, we suppose that the leader, labeled as i¼0, has the
following dynamics:

dx0ðtÞ ¼ ½AðtÞx0ðtÞþαðtÞf ðt; x0ðtÞÞ� dtþσ0ðt; x0ðtÞÞ dwðtÞ; ð6Þ
where x0ARn is the state of the leader, σ0ðt; x0ðtÞÞ : R� Rn-Rn is
the noise intensity and w(t) satisfies (4). In Eqs. (3) and (6), the
matrix

AðtÞ ¼ AþβðtÞΔAðtÞ; ð7Þ
and

ΔAðtÞ ¼MFðtÞH: ð8Þ
The real-valued matrix ΔAðtÞ represents the norm-bounded
parameter uncertainties of the structure (8) with M and H are
known real constant matrices with appropriate dimensions, which
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