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a b s t r a c t

Based on defining a flexible convex hull, a maximum margin classification based on flexible convex hulls
(MMC-FCH) is presented in this work. The flexible convex hull defined in our work is a class region
approximation looser than a convex hull but tighter than an affine hull. MMC-FCH approximates each class
region with a flexible convex hull of its training samples, and then finds a linear separating hyperplane
that maximizes the margin between flexible convex hulls by solving a closest pair of points problem. The
method can be extended to nonlinear case by using the kernel trick, and multi-class classification
problems are dealt with by constructing binary pairwise classifiers as in support vector machine (SVM).
The experiments on several databases show that the proposed method compares favorably to the
maximum margin classification based on convex hulls (MMC-CH) or affine hulls (MMC-AH).

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Over recent years, as a robust methodology for classification,
support vector machine (SVM) [1] has been successfully used in a
wide variety of applications including computer vision [2,3], text
categorization [4,5], bioinformatics [6,7] and fault diagnosis [8,9].
Moreover, some fruitful methods combining SVM with other
learning strategies have also been proposed and bring perfor-
mance improvements to SVM. Ji et al. [10] proposed a new
learning paradigm named multitask multiclass privileged infor-
mation support vector machine that can take full advantages of
the multitask learning and privileged information. Sun and Shawe-
Taylor [11] presented a general framework for sparse semi-
supervised learning and subsequently proposed a sparse multi-
view support vector machine. Wang et al. [12] introduced a novel
active learning support vector machine algorithm with adaptive
model selection which traces the full solution path of the base
classifier before each new query, and then performs efficient
model selection using the unlabeled samples. The basic idea
of SVM is to construct a separating hyperplane that maximizes
the geometric margin which is defined as the distance between
the separating hyperplane and the closest samples from two
sample sets. From geometrical point of view, in linearly separable
case the SVM optimization problem of finding the maximum
margin between two sample sets is equivalent to finding the

closest pair of points on the respective convex hulls of the two
sample sets, and the optimal separating hyperplane is chosen to be
the one that perpendicularly bisects the line segment connecting
the closest pair of points [13]. That is to say, SVM can be regarded as
a maximum margin classification based on convex hulls (MMC-CH)
which actually approximates each class region with a convex hull,
and the two closest points on the convex hulls determine the
hyperplane for separating the convex hulls. In practice, the samples
we can obtain are always finite, but the real number of samples
belonging to the class region of these samples should be actually
infinite. SVM approximates the class region of these samples with a
convex hull rather than the isolated samples themselves, thus the
samples extends to be infinite.

Actually, relevant researchers have also proposed some other
analogous geometric models to approximate class regions, such as
affine hulls, hyperspheres and hyperellipsoids. In the spirit of the
geometric interpretation for SVM, Zhou et al. [14] and Cevikalp
et al. [15] have independently presented a maximum margin
classification based on affine hulls (MMC-AH). In contrast to
SVM, this method approximates class regions with affine hulls of
their sample sets rather than convex hulls, and then the separating
hyperplane can be determined by solving the closest pair of points
problem. Tax and Duin [16,17] introduced a method called support
vector data description (SVDD) for novelty or outlier detection.
SVDD tries to find a smallest hypersphere containing almost all
sample points for approximating the class region and classifies an
unknown sample according to the Euclidean distance from this
sample to the center of the hypersphere. Moreover, the hyper-
sphere approximation is also extended to multi-class classification

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.07.038
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: yangyu@hnu.edu.cn (Y. Yang).

Neurocomputing 149 (2015) 957–965

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.07.038
http://dx.doi.org/10.1016/j.neucom.2014.07.038
http://dx.doi.org/10.1016/j.neucom.2014.07.038
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.07.038&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.07.038&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.07.038&domain=pdf
mailto:yangyu@hnu.edu.cn
http://dx.doi.org/10.1016/j.neucom.2014.07.038


problems. Lee and Lee [18] employed a hypersphere for approx-
imating the class region of each sample set and then utilize these
approximations to classify an unknown sample via Bayesian
decision rule. Wei et al. [19] also proposed another one-class
classification method, which replaces the hypersphere with a
hyperellipsoid for the class region approximation in SVDD and
thus utilizes the Mahalanobis distance rather than Euclidean
distance as the decision rule. No matter for one-class or multi-
class classification problems, these classification methods based on
geometric models have one thing in common, namely, a kind of
geometric model (convex hulls, affine hulls, hyperspheres or
hyperellipsoids etc.) is used to approximate the class region of
each sample set and then the classification models are built based
on certain decision rule. Therefore, these methods offer us a good
idea for classification that one can start with geometric approx-
imation models to class regions.

The convex hull is the smallest convex set containing given finite
samples, so it could approximate the class region very tightly.
Generally speaking, the natural class region almost always extends
beyond the convex hull of its finite samples, especially in high-
dimensional spaces. In this sense, the unrealistically tight convex
hull is typically a substantial under-approximation to the class
region. As opposed to the convex hull, the affine hull gives a rather
loose approximation, because it does not constrain the positions of
the sample points within the affine subspace. Besides, linear
separability of samples does not necessarily guarantee the separ-
ability of corresponding affine hulls [15]. It is more restrictive from
this point of view. Affine hulls go to infinity in every direction thus
they will not overlap only if they are parallel to each other. The
hypersphere model is particularly suitable for samples with a
spherical distribution and high clustering degree; otherwise, large
empty space will appear inside the hypersphere. In this case, the
hypersphere also gives a relatively loose approximation to the class
region. The large empty space is likely to misclassify samples from
other class regions or outliers generated by noise and interference
to such approximated class region. Compared with the hypersphere,
the hyperellipsoid model takes the distribution information of
samples into consideration and thus approximates the class region
more tightly. However, in the case of high-dimensional small
samples the covariance matrix tends to be singular, which brings
some algorithm obstacles to the classification methods based on
hyperellipsoids in high-dimensional feature spaces. Although some
skills have been developed to improve the calculation of the
covariance matrix, but they still have many more parameters owing
to the need to represent the covariance matrix.

In a word, it is still worthwhile for us to explore another
appropriate geometric model for approximating the class region of
samples in the pattern recognition research. Inspired by convex
hulls and affine hulls, in this study we define a new geometric
model called a flexible convex hull for the class region approxima-
tion and propose a novel classification method, i.e., maximum
margin classification based on flexible convex hulls (MMC-FCH).
The basic goal of MMC-FCH is to find an optimal linear separating
hyperplane that yields the maximum margin between flexible
convex hulls of sample sets. This can be solved by computing a
closest pair of points problem and then the optimal separating
hyperplane is chosen to be the one that perpendicularly bisects
the line segment connecting the closest pair of points. MMC-FCH
can also be extended to nonlinear case by using the kernel trick. To
use the proposed method in multi-class classification problems,
we can consider most of the common strategies developed for
extending binary SVM classifiers to the multi-class cases.

The remaining part of the paper is organized as follows. Section 2
gives the definition of a flexible convex hull. Section 3 introduces the
proposed method, MMC-FCH. Section 4 presents our experimental
results and Section 5 concludes the paper.

2. Definition of a flexible convex hull

2.1. Motivation

As mentioned above, SVM can be regarded as a maximum
margin classification based on convex hulls (MMC-CH), which first
approximates each class with a convex hull of its training samples
and then finds a hyperplane that maximizes the margin between
the two convex hulls. The convex hull of a sample set can be
expressed as a linear combination of the sample points from the
sample set where all coefficients are non-negative and sum to one.
Consider a finite sample set X ¼ fxig ði¼ 1;2; :::;nÞ, xiAℝp, then the
convex hull of the sample set X can be written as

convðXÞ ¼ ∑
n

i ¼ 1
αixi

����� ∑ni ¼ 1
αi ¼ 1;0rαir1

( )
ð1Þ

where αi is the combination coefficient of the ith sample point xi.
The convex hull model is the tightest possible convex approxima-
tion to the class region, and for classes with more general convex
forms, it is typically a substantial under-approximation.

Other than convex hull models, maximum margin classification
based on affine hulls (MMC-AH) approximates each class with an
affine hull [15]. The affine hull of a sample set can be expressed as
a linear combination of the sample points where coefficients add
up to one without non-negativity constraints. Then, the affine hull
of the sample set X can be written as

affðXÞ ¼ ∑
n

i ¼ 1
αixi

����� ∑ni ¼ 1
αi ¼ 1

( )
ð2Þ

where αi is the combination coefficient of the ith sample point xi.
Even though the affine hull is an unbounded and hence typically
rather loose model to the class region in contrast to the convex
hull approximation, MMC-AH works surprisingly better than SVM
(or MMC-CH) especially in high-dimensional spaces with limited
number of samples [15]. This is one indication that convex hulls
based methods may be too tight to be realistic. Nevertheless, due
to the unboundedness of affine hulls, the separability of affine
hulls requires they are certainly parallel to each other. If different
sample sets have similar or intersecting affine hulls but very
different distributions of samples within their affine hulls, MMC-
AH would fail to separate the sample sets. Therefore, it seems
more reasonable to tighten the affine hull model.

2.2. Flexible convex hulls

Motivated by convex hulls and affine hulls, we define a new
geometric model called a flexible convex hull for the class region
approximation. Similar to the convex hull and the affine hull, a
flexible convex hull can also be expressed as a linear combination of
sample points where coefficients add up to one, but it imposes
different lower and upper bounds on the coefficients. More formally,
the flexible convex hull of the sample set X is define as

flexðXÞ ¼ ∑
n

i ¼ 1
αixi ∑

n

i ¼ 1
αi ¼ 1;

1�λ
n

rαir
1�λ
n

þλ

�����
( )

ð3Þ

where αi is the combination coefficient of the ith sample point xi and
λAð1; þ1Þ is the flexible factor. The flexible convex hull and the
flexible factor both have their own explicit geometric interpretations.
For a given λ, an arbitrary sample point xiAX extends along the
radial direction xxi

�!
with respect to λ where x¼ ð1=nÞΣn

i ¼ 1xi is the
center of the sample set X, and the corresponding extended point
can be written as x0i ¼ ð1�λÞxþλxi, then the convex hull of the new
sample set X 0 ¼ fx0igði¼ 1;2; :::;nÞ is exactly the flexible convex hull of
the original sample set X; moreover, the flexible factor λ is exactly
the ratio of the distance between the extended point x0i and the set

M. Zeng et al. / Neurocomputing 149 (2015) 957–965958



Download English Version:

https://daneshyari.com/en/article/409797

Download Persian Version:

https://daneshyari.com/article/409797

Daneshyari.com

https://daneshyari.com/en/article/409797
https://daneshyari.com/article/409797
https://daneshyari.com

