
The graph based semi-supervised algorithm with ℓ1-regularizer

Ling Zuo a,b, Luoqing Li a,n, Chen Chen a

a Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, China
b School of Science, Hubei University of Technology, Wuhan 430068, China

a r t i c l e i n f o

Article history:
Received 29 January 2014
Received in revised form
8 April 2014
Accepted 21 July 2014
Communicated by Feiping Nie
Available online 2 August 2014

Keywords:
Graph-based semi-supervised learning
ℓ1�regularizer
Excess misclassification error
Hypothesis error
Manifold error

a b s t r a c t

In this paper a new graph-based semi-supervised algorithm for regression problem is proposed. An
excess generalization error bound is established. It evaluates the learning performance of the proposed
method and has a fast convergence rate with Oðlϵ�1Þ decay. An example is given to show that the
proposed method uses a small portion of the labeled and unlabeled data to represent the target function,
which illustrates the sparsity of the algorithm, and can efficiently reduce the computational complexity
of the semi-supervised learning. Moreover, some experiments are performed to validate the sparsity and
learning performance of the formulation.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Semi-supervised learning (SSL), as a powerful tool to learn from a
small number of labeled data and a large number of unlabeled data,
has been of growing interest in the machine learning research [1–4].
There are two typical SSL approaches: learning with the cluster
assumption [5] and learning with the manifold assumption [6–9].
When assuming that the data is embedded into a low-dimensional
manifold, the graph-based method seems more effective as the
unlabeled data can be used to uncover the intrinsic manifold
structures. Solid theoretical foundations have been laid for a large
family of graph-based SSL algorithms, such as Laplacian support
vector machine (LapSVM) and Laplacian regularized least squares
(LapRLS). However, most of these algorithms have solutions that
involve kernel evaluation on all the labeled and unlabeled examples,
which may result in a much slower computation dealing with the
huge set of the unlabeled data in real applications.

To address the above issue, previous discussions have done to
realize sparse graph-based SSL. For example, Tsang et al. [7]
proposed a sparse graph-based SSL algorithm by introducing the
sparsified manifold regularizer. Sun et al. [10] caught the sparsity
of the algorithm based on the manifold-preserving graph which
reduces the number of vertices in the graph. Other examples
include [11] and [12]. These algorithms can be unified in a
Tikhonov regularization scheme in a reproducing kernel Hilbert

space (RKHS) with a Mercer kernel K. Such a kernel has to be
continuous, symmetric and positive semi-definite.

In this paper we proposed a novel graph-based semi-super-
vised algorithm for regression problems. Unlike the Tikhonov
regularization scheme in a RKHS, the algorithm considered here
takes the form of regularization scheme with both the ℓ1-regular-
izer and manifold regularizer that stated in a data dependent
hypothesis space. Note that the kernel here is not necessarily
symmetric or semi-definite. This leads to a wider selection of the
kernel which offers more flexibility. Explicit examples of this
general kernel can be found in [13,14].

The main results of the paper are as follows. One is that we
derive the generalization error bound for the proposed algorithm
and show that it has Oðlϵ�1Þ decay, where ϵ40 is a small
parameter tends to zero. This convergence rate is faster than the
sparse semi-supervised method in [11] with the order of Oðl�1=2Þ.
It is also faster than the supervised coefficient regularization
methods, e.g., Oðl�1=5Þ in [15], Oðl�1=3Þ in [13], and Oðl�1=2Þ in
[14]. The main difficulty in the error analysis is the data dependent
nature of the kernel-based hypothesis space and the extra mani-
fold regularization term. Hence, a new error decomposition
technique is exploited by means of introducing the additional
hypothesis error and manifold error. The other contribution is that
we study the sparsity of the algorithm based on our error analysis.
An example is given to show that the proposed algorithm is able to
use a small portion of the labeled and unlabeled samples to
represent the target function. This is computationally desirable,
because for semi-supervised learning usually a considerably large
number of unlabeled examples are available.
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The remainder of the paper is organized as follows. In Section
2, we present the new graph-based semi-supervised method.
Section 3 includes the main results on error analysis and the
sparsity of the algorithm. In Section 4 the generalization error is
estimated based on the empirical covering numbers. In Section 5
the sparsity of the algorithm is investigated based on our error
analysis. An empirical study is given in Section 6. We conclude the
paper in Section 7.

2. The new graph-based semi-supervised algorithm with the
ℓ1-regularizer

In this section, we first provide the necessary background of
the semi-supervised regression problem and then present the new
graph-based semi-supervised algorithm.

2.1. Preliminaries

In a regression problem, we work with an input space X and an
output space Y. Let X �Rd be a compact metric space and
Y ¼ ½�M;M�. A function f : X-Y makes a prediction of yAY at
xAX by f(x). The prediction accuracy may be measured by the
least-square loss ðy� f ðxÞÞ2. Let ρ be an underlying probability
distribution on Z ¼ X � Y . The prediction ability of f is quantita-
tively measured by the generalization error

Eðf Þ ¼
Z
Z
ðy� f ðxÞÞ2 dρ:

Decompose ρ into the marginal distribution ρX on X and the
conditional distribution ρðyjxÞ at xAX. The function minimizing
Eðf Þ is called the regression function given by

f ρðxÞ ¼
Z
Y
y dρðyjxÞ; xAX:

Since ρ is usually unknown, f ρ cannot be obtained directly. We
can learn f ρ from samples. Kernel method is an important tool in
learning theory. A well studied kernel-based algorithm for the
regression problem is the least-square regularization scheme. If
K : X � X-R is a continues positive semi-definite kernel and
ðHK ; ‖ � ‖K Þ is the associated RKHS which is data independent, then
the scheme is given by

f z;λ ¼ arg min
f AHK

fEzðf Þþλ‖f ‖2Kg; ð1Þ

where Ezðf Þ ¼ 1=l∑l
i ¼ 1ðyi� f ðxiÞÞ2 is the empirical risk and λ40 is a

regularization parameter. Mathematical analysis of learning algo-
rithm (1) has been well understood [16].

In the semi-supervised model, a learner obtains a labeled data
set z¼ fðxi; yiÞgli ¼ 1 and an unlabeled data set x1 ¼ fxjgj ¼ lþu

j ¼ lþ1. It aims
at using a large amount of unlabeled data, together with a small
set of labeled data, to built better predictors f. Throughout the
paper we assume that the labeled data are drawn independently
according to the measure ρ while the unlabeled data are generated
independently by the marginal distribution ρX .

When the data lie on a low-dimensional manifold, the graph-
based method seems more effective for semi-supervised learning
and many approaches have been proposed. One of the most
successful works is the manifold regularization framework pro-
posed in [6] due to the convexity of its optimization problem, out-
of-sample prediction and solid theoretical foundations. They
introduced the LapRLS which was formulated as

min
f AHK

1
l
∑
l

i ¼ 1
ðyi� f ðxiÞÞ2þλ1‖f‖2K þ

λ2

ðlþuÞ2
f̂
T
Lf̂

where f̂ ¼ ðf ðx1Þ;…; f ðxlþuÞÞT . λ1 and λ2 are nonnegative regulariza-
tion parameters. L¼D�W is the unnormalized graph Laplacian,

where D is a diagonal matrix with diagonal entries Dii ¼∑lþu
j ¼ 1Wij.

The weight Wij is given by a similar function Wðxi; xjÞ. The more
similar xi and xj, the larger Wij should be. Note that

f̂
T
Lf̂ ¼ 1

2∑
lþu
i;j ¼ 1ðf ðxiÞ� f ðxjÞÞ2Wij.

In this framework, the underlying geometric structure of the
marginal distribution is estimated from the unlabeled data and is
incorporated into a RKHS to form a regularization term (a.k.a.
manifold regularizer). This regularizer ensures that the learned
decision function is smooth along the manifold. Recent work [17]
also shows that the manifold regularizer is useful for the feature
selection.

2.2. The new graph-based semi-supervised algorithm with the
ℓ1-regularizer

In this paper we propose a new graph-based semi-supervised
formulation which abandons the symmetry (and of course positive
semi-definiteness) of the kernel, and considers a regularization
scheme with ℓ1-regularizer stated in a data dependent hypothesis
spaces. Here a kernel function K : X � X-R is a continuous
function. The hypothesis space depends on the sample z and is
defined as

HK ;z ¼ ∑
lþu

i ¼ 1
αiKxi : αiAR

( )
;

where Ktð�Þ ¼ Kð�; tÞ. The proposed algorithm is given by

f z;λ ¼ arg min
f AHK;z

Ezðf Þþλ1Ωzðf Þþ λ2

ðlþuÞ2
f̂
T
Lf̂

( )
; ð2Þ

where

Ωzðf Þ ¼ ∑
lþu

i ¼ 1
jαij for f ¼ ∑

lþu

i ¼ 1
αiKxi :

Assume that 0rWijrω with ωZ0.
This nonsymmetric kernel appears naturally in the study of

dual wavelets or frames in wavelet analysis [18,19]. It has the
flexibility of having good representation for f z;λ while keeping
strong approximation ability. The ℓ1-regularizer often leads to
some sparse properties. Note that when u¼0 and λ2 ¼ 0, algorithm
(2) reduces to the proposed method in [13]. In this paper, we are
interested in how fast f z;λ approximates f ρ as the number of
examples increases. Moreover, based on our error analysis the
sparsity of algorithm (2) will be studied.

3. Main results

In this section, learning rates will be provided in terms of
properties of the input space X, the measure ρ, and the kernel K.
Besides, an example is given to show the sparsity of the proposed
algorithm.

Denote by N ðX; rÞ the covering number of X. Throughout the
paper we shall assume

N ðX; rÞrCη
1
r

� �η

; 80orr1 ð3Þ

for some η40 and Cη40.

Definition 3.1. A probability measure ρX on X is said to satisfy
condition Lτ with τ40 if there exists some Cτ40 such that

ρXðfuAX : ju�xjrrgÞZCτrτ; 8xAX; 0orr1:
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