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This paper provides a simple forecasting framework for nonlinear and non-stationary time series using
Wavelet based nonlinear models. The proposed method exploits the ability of wavelets to detect non-
stationarities that may be present in a given time series in combination with higher order nonlinear
Volterra Models. The utility of the proposed model is verified using two examples: the first based on a
synthetically generated times series with nonlinear and non stationary features; the second case study
examined in the paper pertains to forecasting of number of pilgrims visiting the well known religious
shrine at Katra in the state of Jammu and Kashmir in India. Further, the proposed model was applied to
3 time series from M3 competition. The results show that the proposed models perform better when
compared with the performance of some well known benchmark models. The long term predictive
capability of the wavelet based nonlinear models has also been studied separately.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Forecasting the state of any system requires modelling of the
underlying physical mechanism responsible for their generation.
In practice, many of the real-world systems exhibit nonstationarity
(in the sense that statistical characteristics change over time due
to either internal or external dynamics) as well as nonlinear
behaviour [6]. Explicit examples of such signals are the Sunspot
numbers and the Nile River flow series. Evidence of presence of
nonstationarity in some existing time series has raised a number
of questions as to the adequacy of the conventional statistical
methods for long-term regional forecasting [6]. The fundamental
assumption in most empirical or statistical approaches is statio-
narity over time [2]. Pre-processing of non-stationary time series,
such as through differencing, is often a pre-requisite for the next
stage of model building and, as a disadvantage, is accompanied by
an amplification of high frequency noise in the data [23]. Young,
[23] proposed the Dynamic Regression methods as an alternative
and, while these latter methods may indeed be useful for the
analysis of non-stationary time series, however, their inherent
static regression feature cannot fully explain many complex
geophysical datasets [6]. The identification of a nonlinear dyna-
mical model that relates directly to the underlying dynamics of the
system being modelled remains a challenge and is an active
research topic. Several models have been proposed for modelling
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nonlinear time series and range from traditional NARMAX |[5]
models to recent developments such as Neural Networks and
Support Vector Machines (SVM). Many past studies including Kim
and Waldes [1,8,9]; Nourani et al. [15] concluded that even though
Al methods seem to perform well for a given data set, they lack the
ability to discern and identify non-stationary components that are
inherent in the natural time series. Further, it is not always
possible to determine significance of the input variables prior to
the exercise and it is important to identify and eliminate redun-
dant input variables and those that contribute information in
amounts deemed as insignificant. Finally, the knowledge con-
tained in the trained networks is difficult to interpret because it
is distributed across the connexion weights in a complex manner
without lending itself to objective interpretation.

Recent developments in wavelet theory have resulted in the
development of numerous applications [3,4,7,14], and Renaud
et al. [20] for modelling non-stationary time series.

The intrinsic advantages offered by wavelets provided a fillip to
initiatives on nonlinear modelling and saw an emergence of
combination based approaches where wavelets were coupled with
Al based techniques like ANN (see, for example, Kim (2003),
Cannas and Sias (2005), Renaud et al. [20], Partal and Kisi [17],
Kisi [9], and Adamoswki (2010)) and Support Vector Machines
(SVM), Osowski and Garanty [16]). However, in the context of
these Al models, Kisi [9] comments that these models do not
overcome the disadvantages that are normally attributed to ANN
based model and proposed a simple wavelet based linear regres-
sion model that the latter author applied for modelling the time
series of monthly stream flows.
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Nomenclature

Al artificial intelligence.
ANN artificial neural network

MISO multiple input single output.

SVM support vector machines.

NARMAX (nonlinear autoregressive moving average with eXo-
genous inputs)

As an alternative to this linear approach, Maheswaran, Khosa [11]
proposed a Wavelet Volterra Coupled (WVC) model for modelling
stream flow time series and has been shown to have the capability to
accommodate non-linear attributes that the time series may be
naturally vested with. As an extension of that work, this paper
presents a proposal that combines the aforementioned WVC model
with a suitably designed Kalman Filter for modelling a non-stationary
time series along with an evaluation of its performance when applied
on different kinds of synthetically generated time series having some
prescribed attributes as well as on actual observed time series.

2. Wavelet transform

The well-known Fourier transform involves the projection of a
series onto an orthonormal set of trigonometric components.
In particular, Fourier series have infinite energy (they do not fade
away) and finite power (do not change over time). In contrast,
wavelets have finite energy with a very compact support and, by
implication, they grow and decay in a limited time period. As a key
concept, basic Fourier transform highlights the spectrum of any
given signal but, importantly, this frequency decomposition is
global rather than localized. Wavelet transform, on the other hand,
offers the capability of localized multi-resolution decomposition
(see, for example, Percival and Walden [18]) and, therefore,
provides information not only on the frequency components that
are present in a signal but also their occurrence in time.

The wavelet series approximation of a series y(t) is defined by

J
YO =X rdiO+ X X Wikwjp(t) (1)
3 iZ0k=0

where ¢, denotes the father wavelet and captures the smooth and
low-frequency part of the signal, y, is the mother wavelet and
captures the details and other high-frequency components, J is the
number of multi-resolution levels (or scales) and k ranges from
one to the number of coefficients present in the corresponding
component.

The coefficients ¢;x and wj j—o3,.; are known the scaling and
wavelet coefficients which are given by

O = (Y. dyie) and Wy = (Y, yrje)
where (., .)denotes the standard L? inner product.
The functions ¢;x(t) and y;(t) are the approximating wavelet

functions and are generated from ¢ and y functions through
scaling and translation operators as follows:
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The transformation of time series y(t) into the coefficients cj
series y and the output of a discrete wavelet transform can take
various forms. The above wavelet transform is called discrete
wavelet transformation. Even though it is advantageous in data
compression but not useful in time series analysis due to shift

variance. As an alternative, non-decimated, (or undecimated)
wavelet transforms such as the Maximal Overlap Discrete Wavelet
Transform (MODWT) by Percival and Walden [19] and the ‘@’ ‘trouv’
wavelet transform proposed by Renaud et al. [20] significantly
overcome the difficulties that arise on account of lack of shift
invariance associated with decimation based approaches to wave-
let decomposition. In this work we have used MODWT provided
by Percival and Walden [19] as WMTSA Toolbox.

3. Nonlinear integrating framework — MISO Volterra
representation

The Volterra series is a model used for representing nonlinear
time-invariant systems with memory. The memory of the system
denotes the how far in time, the past events are influencing the
system behaviour in the future. The Volterra model is based on a
simple extension of the Taylor series expansion for nonlinear
autonomous causal systems with memory and any given function
Y(t) may be written as

Or, alternatively, in terms of the Volterra operators as

t
YO= [ X
t pt
o [t e Ve

toptopt
Jr///h3(T],Tz,T3)X(T*‘L'1)X(1712)X(T71‘3)d1’] dry dr3+...

0 Jo Jo
3)

Y(t) = Hi[x(D)]+ Ha[X(D)]+ H3[X(O)]+ ... Ha[X(D)] + ... “)

The functions h,(z1,72,...,7,) are called the Volterra kernels of the
system, and the transformation Hy[x(t)], which represents the
convolution integral, is known as the nth order Volterra operator.

The Volterra kernels can be assumed to be symmetric without
any loss of generality and is defined to be one which is a
symmetric function of its arguments so that any of the n! possible
interchanges of the arguments 7y,75,...,7; leave the kernel value
hn(71,72,...,tn) unchanged. For example, when n=2, hy(r,r2) is
Symmetric if hz(T] ,‘L'z)=h2(‘[2,’[1 )

Generally, it has been seen that the expansion up to second
order is sufficient to explain the non-linearity in most natural
systems [10] and for these cases, the second-order Volterra
expansion reduces to

t t t
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)
The above equation can be expressed in discretized form as
shown below

M . i My My .. . .
(= Zl Hi(Gx(t—j+ Zl ,Zl Ha (i, jx(t — Dx(t — )
Jj= i=1j=
YO =y1(O)+Y2(0)
t=1,2,3..n. (6)

where M, represents the memory of the system and H; and H,
represents the discrete form of the first and second order Volterra
kernels (h; and h;) that have to be estimated. The Volterra series
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