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a b s t r a c t

We propose a novel theoretical model and a method for solving binary classification problems. First, we
find knowledge sets in the input space by using estimated density functions. Then, we find the final
solution outside knowledge sets. We derived bounds for classification error based on knowledge sets.
We estimate knowledge sets with examples and find the solution by using support vector machines
(SVM). We performed tests on various real world data sets, and we achieved similar generalization
performance compared to SVM with significantly smaller number of support vectors.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

One of the possibilities to improve generalization performance
for classification problems is to incorporate additional knowledge,
sometimes called prior knowledge. Various types of prior knowl-
edge have been already incorporated to SVM. In [1], the authors
distinguish two types of prior knowledge: knowledge about class
invariance, and knowledge about the data. The first type includes
knowledge about classification in regions of the input space, [2–5],
knowledge about class invariance during transformation of the
input. The second type includes knowledge about unlabeled
examples, imbalance of classes, and quality of the data. In [2,3],
the authors proposed informally a concept of knowledge sets: as
for example cubes supposed to belong to one of the two cate-
gories; they concentrated on incorporating prior knowledge in the
form of polyhedral knowledge sets. In this paper, instead of
incorporating prior knowledge, we use a concept of knowledge
sets to model a standard classification problem, based only on
training examples. We can interpret a knowledge set as informa-
tion about classification for a set of data points in the input space.
A decision boundary is supposed to lie outside knowledge sets (in
an uncertain set). The similar concept of uncertainty is related to
version spaces, which were used in Bayes point machines (BPS),
[6]. A version space is a set of hypotheses that are consistent with a
training sample. A soft version space is a version space where an

error in classifying training data is allowed and is controlled by a
parameter. The BPS method from each version space finds a
representative candidate for a solution as a Bayes point, which is
approximated by the center of mass of a polyhedron. In [7], the
authors instead of a version space maintain a set of possible
weight-vectors in the form of an axis-aligned box and they choose
the candidate with the center of mass of a box. In BPS, a final
version space is chosen according to the empirical test error, while
in [7] the authors compare different boxes by using the principles
from SVM: the principle of the empirical risk minimization (ERM)
and the structural risk minimization (SRM) for the worst case
hypothesis from the box. They also added the third principle of
large volume. Large volume transductive principle was briefly
treated in [8] for the case of hyperplanes and extended in [9]. In
our approach, we deal with uncertainty in the input space instead
of a hypothesis space. We propose a theoretical model of knowl-
edge sets, where we define knowledge sets and an uncertain set.
The knowledge sets are defined purely on sets, without assuming
any particular space for elements or shapes, like boxes.

There are at least three models of a classification problem [10]:
the risk minimization model, estimating the regression function of
expected conditional probabilities of classification for given data,
the Bayes approach of estimating density functions for conditional
probabilities of data for particular classes. None of the above
models is suitable for the concept of knowledge sets, so we
propose a new classification model, called a knowledge set model.

Remark 1. In the knowledge set model, first, we generate knowl-
edge sets. Then, we find a classifier based on the knowledge sets.
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The most known method of classification based on predicting
density functions from sample data is a Bayes classifier which is an
intersection of density functions. Density functions are predicted
by using for example Kernel Density Estimation (KDE), [11]. In this
paper, we propose a classification method based on the knowledge
set model, called knowledge set machines (KSM). In the proposed
method instead of predicting directly the decision boundary from
estimated density functions, we add an intermediate step –

constructing knowledge sets. Then, we find a classifier based on
knowledge sets by using the maximal margin principle used for
example in SVM. Knowledge sets can be interpreted as partition-
ing an input space. The most known algorithm of partitioning for
classification are decision trees which creates boxes with particu-
lar classification. There were some attempts to improve partition-
ing by using tighter boxes, covering only part of the input space,
and using another boxes for classifying the rest of the space, [12].

The outline of the paper is as follows. First, we will analyze a
knowledge set model. Then, we will present the KSM method
based on this model. Finally, we will show experiments and
results. The introduction to SVM and density estimation is in
Appendix B and Appendix C respectively.

2. Knowledge set model

At the beginning, we present some basic definitions and
propositions. Notation for a knowledge set model is described in
Appendix Appendix A. We will define some mathematical struc-
tures on a set, which will consist of the environment objects –

common for proposed structures, and main objects. We propose
the following set of environment objects, E: a universe X of
possible elements of the set S, a set C of possible classes, and a
set of mappings M, mapping some of xAX to some class cAC,
x-c. We can define mappings as a function m : X-C. The
mappings can also be alternatively defined as an equivalence
relation on X. The difference between such defined environment
and the environment used for defining rough sets, [13] is that our
environment has richer structure with some elements x which
may not have mappings. However, we will use the equivalent
environment with mappings for all xAX and with a special class c0
for elements x which would not have mappings. The main goal of
our structure will be to carry information about mapping of all
elements of a set S to some class c. So we propose to define a
structure which we call a knowledge set as follows.

Definition 2 (knowledge set). A knowledge set K is a tuple
K ¼ ðX;C;M; S; cÞ, shortly, without environment objects it is a pair
K ¼ ðS; cÞ, where cac0. It is a set S� X of points with information
that every s!AS maps to cAC. The c is called a class of a knowledge
set.

The complement of a knowledge set K ¼ ðS; cÞ is defined as
K 0 ¼ ðS0; cÞ. We define a union of two knowledge sets K1 ¼ ðS1; cÞ
and K2 ¼ ðS2; cÞ as K1 [ K2 ¼ ðS1 [ S2; cÞ, an intersection as
K1 \ K2 ¼ ðS1 \ S2; cÞ, K1\K2 ¼ ðS1\S2; cÞ. We do not define a union
and an intersection for two knowledge sets with different classes.
We define an inclusion as K1 � K2 ⟺ S1 � S2, sAK ⟺ sAS.

Definition 3 (perfect knowledge set). A perfect knowledge set P is
a knowledge set K ¼ ðS; cÞ for which for all sAS, mðsÞ ¼ c.

Note that the knowledge set ð∅; cÞ is perfect. The complement
of a union of all perfect knowledge sets is a set of all elements with
the c0 class. The difference between a knowledge set and a perfect
knowledge set is that the first one is only information which is not
necessary true.

Definition 4 (full knowledge set). A full knowledge set K is a
knowledge set K ¼ ðS; cÞ such as for every xAX : mðxÞ ¼ c, we have
xAS.

Proposition 5. A complement of a full knowledge set is a subset of
a union of some perfect knowledge set and a set of all x with a
mapping c0.

Definition 6 (full perfect knowledge set). A full perfect knowledge
set is a knowledge set which is full and perfect.

A full perfect knowledge set for cAC is a union of all perfect
knowledge sets for c. The complement of a union of all full perfect
knowledge sets is a set of all elements with the c0 class.

Now we define a pair of two knowledge sets for C ¼ fc1; c2; c0g,
which we call a knowledge setting.

Definition 7 (knowledge setting). A knowledge setting is a pair of
knowledge sets, ðK1;K2Þ, where K1 ¼ ðS1; c1Þ, K2 ¼ ðS2; c2Þ, c1; c2AC,
c1ac2.

We could also define a tuple of knowledge sets.

Definition 8 (perfect knowledge setting). A perfect knowledge
setting is a pair of perfect knowledge sets, ðK1;K2Þ, where K1 ¼
ðS1; c1Þ, K2 ¼ ðS2; c2Þ, c1ac2.

Definition 9 (full perfect knowledge setting). A full perfect knowl-
edge setting is a pair of full perfect knowledge sets, ðK1;K2Þ, where
K1 ¼ ðS1; c1Þ, K2 ¼ ðS2; c2Þ, c1ac2.

The full perfect knowledge setting fully describes the mappings
M, so that we are able to construct the mappings M from it, for
xAS1, mðxÞ ¼ c1, for xAS2, mðxÞ ¼ c2, otherwise mðxÞ ¼ c0.

Definition 10 (uncertain set). An uncertain set U is U ¼ ðS1 [
S2Þ0 [ ðS1 \ S2Þ for any knowledge setting ðK1;K2Þ.

For a perfect knowledge setting ðK1;K2Þ, U ¼ ðS1 [ S2Þ0, because
S1 \ S2 ¼∅. The intuition behind an uncertain set is that we
cannot infer about classes of its elements based only on informa-
tion coming from knowledge settings, without knowledge about
mappings from the environment.

Definition 11 (almost perfect knowledge setting). An almost per-
fect knowledge setting is a knowledge setting ðK1;K2Þ, where
K1 ¼ ðS1; c1Þ, K2 ¼ ðS2; c2Þ, c1ac2 and ðS1\ðS1 \ S2Þ; c1Þ, ðS2\ðS1 \
S2Þ; c2Þ are perfect knowledge sets.

A perfect knowledge setting is a special case of an almost
perfect knowledge setting, when S1 \ S2 ¼∅. From any almost
perfect knowledge setting, we can construct a perfect knowledge
setting by removing a subset S1 \ S2 from the knowledge sets.

Proposition 12. For an almost perfect knowledge setting, all x such
as mðxÞ ¼ c0 belongs to U.

In particular, for a perfect knowledge setting, all x such as
mðxÞ ¼ c0 belongs to U.

Proposition 13. Any subset of a perfect knowledge set is a perfect
knowledge set.

Example 1. The environment consists of X ¼ fx1; x2; x3; x4; x5;
x6; x7g, C ¼ fc0; c1; c2; c3g, and the mappings M are x1; x2; x3↦c1,
x4; x5↦c2, x6↦c3, and x7↦c0. The examples of knowledge sets are
K1 ¼ ðfx1; x2g; c1Þ, K2 ¼ ðfx4; x5; x6g; c2Þ, K3 ¼ ðfx6g; c3Þ,
K4 ¼ ðfx2; x7g; c2Þ, and K5 ¼ ðfx1; x6g; c3Þ. We can notice that K1 is a
perfect knowledge set, K2 is a full knowledge set, K3 is a full perfect
knowledge set. The ðK1;K3Þ is a perfect knowledge setting. For
ðK1;K4Þ, U ¼ fx2; x3; x4; x5; x6g. The ðK1;K5Þ is an almost perfect
knowledge setting.
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