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a b s t r a c t

This paper is concerned with the stability problem for a class of Markovian jumping neutral-type neural

networks with mode-dependent mixed time-delays. The mixed time-delays are composed of discrete

and distributed delays, both of which are mode-dependent. In addition, the distributed time-delays are

characterized by the upper and lower bounds, both of which are mode-dependent. By constructing new

Lyapunov–Krasovskii functionals, a unified framework is established to derive sufficient conditions for

the concerned systems to be globally exponentially stable in mean square. A simulation example is

provided to demonstrate the usefulness of the main results obtained.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the past few decades, the successful applications of recur-
rent neural networks (RNNs) in a variety of areas (e.g. pattern
recognition, associative memory and combinational optimization
[1,26]) have aroused a surge of research interests in the dynami-
cal behaviors of the RNNs. Among various behaviors, the stability
has proven to be the most important one that has received
considerable research attention. For instance, if a neural network
is employed to solve some optimization problems, it is highly
desirable for the neural network to have a unique globally stable
equilibrium, and it is not surprising that the stability analysis of
neural networks has been an ever hot research topic resulting in
enormous stability conditions reported in the literature, see e.g.
[1,6,7,10,12,13,16,17,21–23,34–36].

Time delay results from the signal transmission lags between
neurons and is now a well-known source for causing instability
and poor performances of neural networks (see e.g. [1,14,15]).
So far, in the context of neural networks, two categories of
time-delays, namely, discrete and distributed time-delays, have

been thoroughly investigated in the literature. Discrete time-
delays have clear practical significance that can be easily detected
in reality. The stability analysis for RNNs with discrete delays has
been an attractive subject of research in the past few years.
Various sufficient conditions, either delay-dependent or delay-
independent, have been proposed to guarantee the global asymp-
totic or exponential stability for the RNNs, see e.g. [6,29,31] for
some recent publications. Distributed delays, on the other hand,
reflect the spatial nature of the neural networks because of the
presence of an amount of parallel pathways of a variety of axon
sizes and lengths, which provides a neural network with a spatial
nature [25,30]. Recently, the so-called mixed time-delays (also
called discrete and distributed delays) have received an increasing
research attention and many relevant results have been reported
in the literature, see e.g. [31,34,36] and the references therein.

In practice, the RNNs often exhibit the behavior of finite state
representations (also called clusters, patterns, or modes) which are
referred to as the information latching problems [4]. In this case,
the network states may switch (or jump) between different RNN
modes according to a Markovian chain, and this gives rise to the so-
called Markovian jumping recurrent neural networks (MJRNNs).
The MJRNNs have the advantage of modeling the RNNs subject to
information latching, abrupt variation in the network structures,
sudden environmental disturbance, changing neuronal intercon-
nections, etc. Recently, the dynamics analysis problem of MJRNNs
has attracted a great deal of research interest [27,32,37,38]. For
example, in [32], the exponential stability problem has been first
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addressed for a class of delayed recurrent neural networks with the
Markovian jumping parameters. In [38], the problem of exponen-
tial stability has been investigated for a class of stochastic neural
networks with both Markovian jump parameters and mixed time
delays. In [27], a noise-induced stabilization method has been
proposed for RNNs with mixed time-varying delays and Markovian
switching parameters. In [34], the passivity analysis has been
conducted for discrete-time stochastic neural networks with both
Markovian jumping parameters and mixed time delays.

It is quite common in engineering systems that the time-
delays occur not only in the system states (or outputs) but also in
the derivatives of system states [24]. Examples of such kind of
neutral delay systems include chemical reactors, transmission
lines, partial element equivalent circuits in VLSI systems, and
Lotka–Volterra systems [8]. Accordingly, RNNs with neutral terms
have gained much research interests due to the fact that the
neutral delays could exist during the implementation process of
RNNs in VLSI circuits. The stability analysis issue of neutral RNNs
has recently received considerable research attention and a rich
body of results has been reported, see e.g. [8,9,18]. Naturally,
MJRNNs of neutral type should be more capable of modeling both
the Markovian switching behavior and the derivative-dependent
delay for the RNNs, and the corresponding stability analysis issue
should be of theoretical significance. Nevertheless, a literature
search reveals that there have been very few results on dynamics
analysis of Markovian jumping neutral-type neural networks with

mode-dependent mixed time-delays. It is worth mentioning that, in
two recent papers [2,3], the passivity and stability analysis
problems have been addressed for neural networks of neutral
type with Markovian jumping parameters and time delays, where
the time-delays are not mode-dependent.

So far, to the best of the authors’ knowledge, the stability
analysis problem has not yet been investigated for Markovian
jumping neural networks of neutral type where all discrete,

distributed and neutral delays are mode-dependent with lower and

upper bounds on the distributed delays. The major challenges are as
follows: (1) when the neutral delay term is dependent on the
Markovian jumping mode, the conventional stochastic analysis
tool no longer applies and some novel analysis technique needs to
be developed; (2) when the lower and upper bounds of the
distributed time-delays are both subject to the Markovian switch-
ing (i.e., mode-dependent), the corresponding stability analysis
becomes more complicated since a new Lyapunov functional is
required to reflect the Markovian jumps of the delay bounds; and
(3) it is non-trivial to establish a unified framework to handle the
Markovian jumping parameters, neutral terms and mixed time-
delays. It is, therefore, the main purpose of this paper to make the
first attempt to handle the listed challenges.

In this paper, we consider the stability analysis problem for a
new class of continuous-time neural networks of neutral-type
with Markovian jumping parameters as well as mode-dependent
mixed time-delays. Note that the mixed time-delays comprise
both the discrete and distributed delays that are all dependent on
the Markovian jumping mode. We first develop a special matrix
inequality to account for the mixed and neutral time-delays, and
then a novel Lyapunov–Krasovskii functional is proposed to
reflect the mode-dependent nature of the time-delays. A matrix
inequality approach is utilized to derive sufficient conditions
guaranteeing the stochastic stability of the considered neural
networks. A numerical example is presented to illustrate the
usefulness and effectiveness of the main results obtained.

Notations: Throughout this paper, Rn and Rn�m denote, respec-
tively, the n-dimensional Euclidean space and the set of all n�m

real matrices. The superscript ‘‘T’’ denotes the matrix transposition
and the notation XZY (respectively, X4Y), where X and Y are
symmetric matrices, means that X�Y is positive semi-definite

(respectively, positive definite). diagf� � �g denotes a block-diagonal
matrix, In is the n� n identity matrix, and 9 � 9 denote the
Euclidean norm in Rn. If A is a square matrix, denote by lmaxðAÞ

(respectively, lminðAÞ) the largest (respectively, smallest) eigenva-
lue of A. In symmetric block matrices, an asterisk ‘‘n’’ is used to
represent a term that is induced by symmetry. E½x� and E½x9y� will,
respectively, mean the expectation of x and the expectation of x

conditional on y. Matrices, if their dimensions are not explicitly
stated, are assumed to be compatible for algebraic operations.

2. Problem formulation

Let r(t) (tZ0Þ be a right-continuous Markovian chain taking
values in a finite state space N ¼ f1;2, . . . ,n0g with generator
P¼ fpijg given by

PfrðtþDÞ ¼ j9rðtÞ ¼ ig ¼
pijDþoðDÞ if ia j,

1þpijDþoðDÞ if i¼ j:

(

Here D40, and pijZ0 is the transition rate from i to j if ja i while

pii ¼�
X
ja i

pij:

Consider the following neutral-type neural networks with
mixed time delays and Markovian jumping parameters:

_xðtÞ ¼ EðrðtÞÞ _xðt�t1,rðtÞÞ�AðrðtÞÞxðtÞþBðrðtÞÞf ðxðtÞÞ

þCðrðtÞÞgðxðt�t2,rðtÞÞÞþDðrðtÞÞ

Z t�t4,rðtÞ

t�t3,rðtÞ

hðxðsÞÞ ds, ð1Þ

where xðtÞ ¼ ½x1ðtÞ,x2ðtÞ, . . . ,xnðtÞ�
T is the state vector of n neurons;

frðtÞ,t40g is the continuous-time Markov chain which describes the
evolution of the mode of system (1) at time t; EðrðtÞÞ ¼ ½eijðrðtÞÞ�,
BðrðtÞÞ ¼ ½bijðrðtÞÞ�, CðrðtÞÞ ¼ ½cijðrðtÞÞ�, DðrðtÞÞ ¼ ½dijðrðtÞÞ� denote the
connection weight matrices representing the interconnection struc-
ture between the neurons, and AðrðtÞÞ ¼ diagfa1ðrðtÞÞ,a2ðrðtÞÞ, . . . ,
anðrðtÞÞg40 represents the passive decay rate of the state. The vectors
f ðxðtÞÞ ¼ ½f 1ðx1ðtÞÞ,f 2ðx2ðtÞÞ, . . . ,f nðxnðtÞÞ�

T , gðxðtÞÞ ¼ ½g1ðx1ðtÞÞ,g2ðx2ðtÞÞ

, . . ., gnðxnðtÞÞ�
T and hðxðtÞÞ ¼ ½h1ðx1ðtÞÞ,h2ðx2ðtÞÞ, . . . ,hnðxnðtÞÞ�

T are
the activation function vectors of neurons; t1,rðtÞ and t2,rðtÞ denote the
discrete time-delays of the network in the mode r(t), while t3,rðtÞ and
t4,rðtÞ characterize the mode-dependent upper and lower bounds of
distributed time-delay with t4,jrt3,j ð1r jrn0Þ.

Remark 1. The neural network model (1) is quite general and
includes many well-studied models as special cases, for example,
neural networks of neutral type with discrete time-delays [2,8,18,32],
neural networks with mixed time delays [13–15,19,31,36], and neural
networks with both Markovian jumping parameters and mixed time
delays [34,38].

Denote

t1 ¼ max
1r jrn0

ft1,jg, t2 ¼ max
1r jrn0

ft2,jg, t3 ¼ max
1r jrn0

ft3,jg,

t4 ¼ max
1r jrn0

ft4,jg, t¼maxft1,t2,t3g,

t
1
¼ min

1r jrn0

ft1,jg, t
2
¼ min

1r jrn0

ft2,jg, t
3
¼ min

1r jrn0

ft3,jg,

t
4
¼ min

1r jrn0

ft4,jg, p ¼ max
1r irn0

f9pii9g:

For neuron activation functions, we make the following
assumptions.

Assumption 1 (Liu et al. [19,20]). For the activation functions f ð�Þ,
gð�Þ and hð�Þ, there exist constants l�i , lþi , s�i , sþi , u�i and
uþi ð1r irnÞ such that

l�i r
f iðs1Þ�f iðs2Þ

s1�s2
rlþi , ð2Þ
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