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1. Introduction

The study of the stability and asymptotic properties of neural
networks have attracted the interest of a great number of
researchers in the past years, and many significant results have
been obtained [1-5,17-19]. However, the equilibrium point
sometimes does not exist in many real physical systems. There-
fore, an interesting subject is to discuss the attracting sets of the
neural networks with delays [6-10]. As is well known, inequality
technique is an important researching tool, see [11-16]. However,
the inequalities mentioned above are ineffective for studying the
asymptotic behavior of a class of nonlinear and non-autonomous
neutral type neural network with distributed delays. Motivated
by the above discussions, in this paper, we will improve the
inequality established in [11] such that it is effective for the
considered delayed neural networks. Combining with the proper-
ties of nonnegative matrix, some sufficient conditions ensuring
the global attracting set for a class of nonlinear and non-
autonomous neutral type neural network with distributed delays
are obtained. The results extend the earlier publications.

2. Preliminaries

In this section, we introduce some notations and recall some
basic definitions. E denotes unit matrix, R is the set of real
numbers and R, =[0,+o0). A < B(A < B) means that each pair of
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corresponding elements of A and B satisfies the inequality
“<(<)". Especially, A is called a nonnegative matrix if A> 0.

C(X,Y) denotes the space of continuous mappings from
the topological space X to the topological space Y. Especially, let
C2C((—oo,tp],R™) with ¢ e C is bounded on (—oo,to].

For xeR", Ae R™", peC, 1(t)e C(R,R ), we define [x]* =
(|x1],]x2 xa)' TATT = (g Dy X(Op = (X1 (D)lleqr), 1x2(E)
”T([), . ,”Xn(t)H‘[([))T, ”Xi(t)HT([) =SUPg <5 <1t |Xl‘(t7$)‘, i=1,2,...,n

We consider the following non-autonomous neural networks
with distributed delays
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a xi(t)—];hija)xj(t—r(r))

= —a(OX(O+ Y _by(Of i(x;(1) ™
j=1

n t
+> /_ N wii(t—s)fj(x;(s)) ds+Ii(t), t>to,

i=1

Xi(t) = @;(t), —co <t <tg, i=1,---,n,

where x;(t) is the state of the ith unit at time t; a;(t) > 0 denotes
the passive decay rate; b;(t),w;(t) and hy(t) represent the weight
coefficients of the neurons; I;,i=1,...,n is the external inputs;
fij=1,...,n are activation functions; t(t) e C(R,R ;) is the trans-
mission delays, lim;_, o (t—7(t)) = +o0o. We always assume that
for any ¢ € C, the system (1) has at least one solution through
(to,) denoted by x(t,to,¢) or simply x(t) if no confusion should
occur.
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Definition 2.1 (Xu [11]). f(t,s)e UC; means that feC(R, x
R,R,) and for any given o and any &> 0 there exist positive
numbers B,T and A satisfying

¢ T
/ f(t,s)ds <B, / fts)ds<e, Vt=A. 2)
Especially, f e UC; if f(t,s) =f(t—s) and J;° f(u) du < co.

Definition 2.2. The set Sc R" is called a global attracting set of
(1), if for any initial value ¢ e C, the solution x(t,ty, () converges to
S as t— +oo. That is,

dist(x(t),S)—0 as t— +oo,

where dist(¢,S) =infy, . sd(¢,¥), d(¢,¥) is the distance of ¢ to ¥ in
R

For a nonnegative matrix A e R™", let p(A) denotes the spectral
radius of A.

Lemma 2.1 (Lasalle [20]). If A> 0 and p(A) < 1, then (E—A)"' > 0.

3. Main results

In order to obtain the asymptotic properties of Eq.(1), we first
establish the following integral inequality with delays.

Lemma 3.1. Let y(t) e C(R,R".) be a solution of the delay integral
inequality

V(O < G(t,to)+ By}, + / QES(S)IL, ds

+ / ‘I’(r,s)/ {syWgy, dvds+], t=to, 3)
YO <), Vte(—oo,t], “4)
where G(t,to) e (R x R,R"), BeRT", Q(tu)e C(R x R,RT™),

J=G1r- i)' 20, @) € C(—00,t0L,R",.), oy is constant, i=1,2,3.
Assume that the following conditions are satisfied:

(Ay) G2 SUPy, < s < +00G(S,t0) < +00 and there exists constant matrix
111 > 0 such that

t t S
/ Q(t,s) ds+/ ‘P(t.s)/ {s,v)dvds<II; forVvt>ty. (5)

(Ay) Let IT =11, +B, p(I) < 1.

Then there is a constant vector K > 0 such that
y(t) < E—ID"V(K+]) for t>to. (6)
Proof. From p(II)<1 and Lemma 2.1, (E-IT)~! exists and
(E-IT)~' > 0. Then there is a constant vector K > G such that
o(t) < (E—IT)"'K, Vte(—oo,tg]. (7)

Combining with the continuity of y(t), if (6) is not true, then there
must be a constant t; >ty and some integer i such that

Yi(t)) = {(E=I)" " (K+])} ®)

y(t) < (E-IT)""(K+)) fort<ty, )

where {-}; denotes the ith component of vector {-}.
Using (3), (5) and (9) and G(t1,tg) < K, we obtain that

Vilt) < (Glt1,to) + BIy(t L, + / Q1SN ds

+ / Wt 5) / LYWL, dv ds+]);

"ty oty
<{K+{B+/ Q(tl,s)ds+/ Y(t4,S)

/s {(s,v)dv ds} (E-ID""(K+)) +]}4

<{K+HE-I)YK+)+]}i

= {ITE-ID)~" +EIK+]));

= {E=ID "' K+))i. (10)
This contradicts the equality in (8), and so (6) holds. The proof is

complete. O

For convenience, we denote

A(t) = diagfa; (¢), .. .,an(0)},
B(t) = (| bi(t) e
W(t,s) = (|wi(t,5) D

H(®) = (hg(O))psns 1) = o).

For (1), we suppose the following:

(By): For any x;eR, jeN, there exist nonnegatlve constants
hy and [; such that |hy(t)| <hU, fix)| < _(h,]),,xn,
L= dlag{ll, RN

(B5): For Vvt > tg, there exist constant matrices I1{,I1, >0, and a
constant vector J > 0 such that

t t
/ e J AV WA 4 Bs)Ly ds < IT;,

.to

f A(v)dV/ W(s—v)L dv ds < I,

fo

ot ot
/ e Jo Aoy ds < .
to

(B3): letH 114 +H2+H pl) < 1.

(Bg): k; _1r1ft0<s<tfs ®a;(v)dv >0 for some 6>0,i=1,2,...,n
There exist nonnegative constants g b(t)| <
giai(t), ij=1,2,....n; [o"* W(s)ds < +oc.

Theorem 3.1. Assume that (B;)—(B3) hold. Then (1) is uniformly
bounded.

Proof. By the variation of parameters formula and combining
with (B;), we can get for Vvt > tg

o) G k) 3 hitto)pyto—T(to))|

j=1

+Zfz,»jnxj(r)uf(0+/t e f”“”d”{Za(s)hUXJ(S)IT(S)

j=1 ji=1

|xi(t)| <e

+ Z |bii(s) |} Ix](s)m)}ds

j=1

e Jiaw d"Z/ |Wij(s—v)|[j11X;()ll ) dv ds

to =

+ / e‘.ﬁ[“*“’)d"f,»(s) ds. €8))
Jto

That is,

t A(v) dv

1 < e o™ P p(to)Hito)p(to—(to)]* +HIX(OL,

t 't
+ / e LA WA+ BE)LIXE), ds
to
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