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a b s t r a c t

The classic multi-image-based super-resolution (SR) methods typically take global motion pattern to

produce one or multiple high-resolution (HR) versions from a set of low-resolution (LR) images.

However, due to the influence of aliasing and noise, it is difficult to obtain highly accurate registration

with sub-pixel accuracy. Moreover, in practical applications, the global motion pattern is rarely found

in the real LR inputs. In this paper, to surmount or at least reduce the aforementioned problems, we

develop a novel SR framework for video sequence by extending the traditional 2-dimentional (2D)

normalized convolution (NC) to 3-dimentional (3D) case. In the proposed framework, to bypass explicit

motion estimation, we estimate a target pixel by taking a weighted average of pixels from its

neighborhood. We further up-scale the input video sequence in temporal dimension based on the

extended 3D NC and hence more video frames can be generated. Fundamental experiments

demonstrate the effectiveness of the proposed SR framework both quantitatively and perceptually.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The objective of multi-image-based super resolution (SR) tech-
nique is to produce one or multiple high-resolution (HR) images
from a set of low-resolution (LR) inputs. By super-resolving the LR
images, it becomes possible to break through the resolution limita-
tion of image acquisition devices and obtain one or more HR images
that the traditional digital cameras cannot capture from a real scene.

The classical image SR reconstruction technique consists of three
fundamental steps: registration, fusion, and post-processing. Before
fusion, it is necessary to know how the LR inputs are generated from
an underlying scene. Fig. 1 illustrates a common degradation model
showing how an HR image is distorted and how the LR images are
formed. From Fig. 1 we can see that, due to atmospheric, lens and
optical fuzzy or other equipment problems, the real sequences
captured by a CCD sensor are significantly degraded. Therefore,
the SR reconstruction aims to recover the original HR image from a
set of observed LR images, solving the inverse problem of the image
formation.

The SR technique was first proposed by Tsai and Huang in
frequency domain [1]. Since then the SR reconstruction has
received intensive attentions in image processing communities
and a variety of SR algorithms have been proposed. Roughly,
the existing multi-image-based SR approaches can be classified
into two categories: frequency domain based and spatial domain

based methods. Rhee et al. [2] proposed a DCT-based method.
Bose et al. [3] presented a recursive total least squares algorithm.
Ur and Gross [4] presented a generalized sampling theorem in the
frequency domain for SR reconstruction. The frequency-domain
methods are simple and easy to implement. However, the SR
performance of this family of methods is limited by the presumed
imaging model and the preclusion of any prior knowledge from
the reconstruction process. Since SR problem is inherently ill-
posed, it is crucial to incorporate some prior knowledge to
make SR estimate well-posed. Consequently, for years, the spatial
domain based methods have become popular. The representative
methods include iterative back projection (IBP) [5], probability
methods (e.g., ML and MAP) [6], [7], the projection onto-convex-
sets approaches [8–11]. Compared with the frequency domain
methods, the major advantage of spatial domain methods lies in
more flexibility in motion and degradation models. Particularly,
some prior knowledge can be incorporated into the reconstruc-
tion process to obtain more stable SR estimate. Nonetheless, the
weaknesses of these algorithms are relatively complex and
computationally intensive.

For the classic multi-image-based SR methods, a key step is to
perform an accurate registration between the LR images before
fusion. Unfortunately, most registration algorithms are limited
to the global motion model. If a local motion pattern, such as
appearance or disappearance of some new objects among images
happens, the classic SR reconstruction approaches cannot work
well. Recent progresses have focused on a strategy without
explicit motion estimation. Takeda et al. [20] proposed a 3-D
ISKR for SR reconstruction by introducing a steerable kernel

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.neucom.2012.03.012

n Corresponding author.

E-mail addresses: yuany@opt.ac.cn, yuan369@hotmail.com (Y. Yuan).

Neurocomputing 94 (2012) 140–151

www.elsevier.com/locate/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2012.03.012
dx.doi.org/10.1016/j.neucom.2012.03.012
dx.doi.org/10.1016/j.neucom.2012.03.012
mailto:yuany@opt.ac.cn
mailto:yuan369@hotmail.com
dx.doi.org/10.1016/j.neucom.2012.03.012


method [12]. Protter et al. [13] presented a generalized non-local
means algorithm for SR reconstruction with no explicit motion
estimate. Danielyan et al. [14] presented a Video-BM3D SR by
extending block-matching 3-D filter [15]. Besides, a probabilistic
motion estimation SR approach was proposed in [16]. The major
advantage of these methods lies in that they do not require any
explicit motion estimation and are capable of handling video
sequence that contains complex motion patterns. The weakness
lies in that: the Video-BM3D method is prone to blurring edges;
the 3-D ISKR method suffers from intensively computational
complexity and requires multiple iterations; the non-local
means-based method tends to generate unwanted artifacts.

In this paper, we propose a new video SR framework, called as
3D adaptive NC, without explicit motion estimation. The pro-
posed SR algorithm aims to maintain sharp edges, to suppress
annoying artifact, and to take a moderate computational com-
plexity. Our idea is inspired from the traditional normalized
convolution [18] that assumes that a target pixel can be estimated
by taking a weighted average of its neighborhood pixels with
similar characteristics. Based upon this assumption, a novel video
SR framework is developed by utilizing the local structure
of video sequence during reconstruction. By analyzing the local
structure and similar characteristics, we distribute different
weighs to different pixels around the target pixel and therefore
achieve SR reconstruction without explicit motion estimation.
Furthermore, the extended 3D adaptive NC can up-scaling the
video sequence along temporal dimension, obtaining more HR
frames.

The rest of the paper is organized as follows. Section 2 shows a
brief overview of the traditional as well as the adaptive normal-
ized convolution algorithm, including its application in SR recon-
struction [17]. Section 3 shows the proposed 3D adaptive NC
algorithm and its application in video SR reconstruction. Experi-
mental results are presented in Section 4 and Section 5 concludes.

2. 2D robust and adaptive normalized convolution

In this section, we will briefly review the normalized convolu-
tion (NC) [18] and its application to SR. The NC is a technique that
performs a general convolution operation on tensor signals by
modeling or analyzing the local structure of an image. The
traditional NC separates both data and operator into a signal part
and a certainty part. In the case of uncertain data, the certainty of
the data must be estimated simultaneously. For a missing pixel,
the certainty is just simply set to zero. Besides, an applicability
function is applied in the localization operator. Similarly, this
paper sets the applicability function to zero when a defined
domain is outside of a given window.

2.1. Notations

For convenience, some important notations are described
briefly. {s, s0} and {x, y, t} represent the global spatial coordinate
and the local spatial one, respectively. f(s) stands for a tensor

representation of an input signal (e.g., image gray value). The
certainty function and applicability function are denoted as c(s, s0)
and a(s, s0), respectively. B(x) represents a filter basis of operator.
Generally, a polynomial basis is chosen for normalized convolu-
tion. P represents a projection coefficient vector. In next subsec-
tion, we will introduce the polynomial-based NC. We introduce
the subscripts to distinguish the 2D and 3D NC.

2.2. Polynomial-based 2D adaptive NC

Given a polynomial basis, B2D(x) can be constructed from N

input data within their local coordinates. We set B2D(x) to {1, x, y,

x2, y2, xy,...}, where 1¼ 1 1 ::: 1
� �T

(N entries contained),

x¼ x1 x2 ::: xN
� �T

, x2 ¼ x2
1 x2

2 ::: x2
N

h iT
and so on. By using

the polynomial basis, the NC can be denoted as a Taylor series
expansion within a local neighborhood centered at s0¼{x0, y0}, i.e.,

bf 2Dðs,s0Þ ¼ p0ðs0Þþp1ðs0Þxþp2ðs0Þyþp3ðs0Þx
2þp4ðs0Þxyþp5ðs0Þy

2þ � � � ,

ð1Þ

where s is the global coordinate and {x, y} represents the local

coordinate with respect to the center pixel. bf 2D s, s0ð Þ is an estimated
intensity value at s when expanded at the centered analysis pixel s0.

P2D is denoted as a vector p0, p1, � � � , pm

� �T
to represent the projec-

tion coefficients.
For the 2D robust and adaptive NC, the certainty function is

defined as:

c2Dðs, s0Þ ¼ exp �
f ðsÞ�bf 2Dðs,s0Þ

��� ���
2s2

r

0@ 1A, ð2Þ

where c2D(s,s0) is the robust certainty depending not only on the
global coordination s, but also the analysis center coordination s0.
The parameter sr defines an acceptable range of the residual error.

The family of applicability functions that defines the localiza-
tion of the convolution operator in the traditional NC is given as

a¼
r�acosb pr

2rmax

� �
, rormax

0, otherwise
,

8<: ð3Þ

where r denotes the space distance to the analysis center. Both a
and b are positive integers. Different values of a and b affect the
sharpness of the application function. Fig. 2 shows an example of
an applicability function, where the values of a and b are 0 and
2 respectively, and rmax is equal to 8.

When a structure-adaptive applicability function is formed,
the initial estimation of the output intensity I and the gradient
images Ix and Iy are employed to estimate the gradient structure
tensor (GST) [19], i.e.,

GST2D ¼rI2DrIT
2D ¼

I2
x IxIy

IxIy I2
y

24 35¼ lmmmTþlvvvT , ð4Þ

Fig. 1. A common image degradation model.
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