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a b s t r a c t

Global modelling consists in fitting a single regression model to the available data, using the whole set of
input and output observations. On the other side of the spectrum stands the local modelling approach, in
which the input space is segmented into several small partitions and a specialized regression model is fit
to each partition. In this paper, we propose a novel approach, called Regional Models (RM), that stands in
between the global and local modelling ones. The proposal extends the two-level clustering approach by
Vesanto and Alhoniemi (2000 [1]) to regression problems, more specifically, to system identification. In
this regard, we first partition the input space using the Self-Organizing Map (SOM), and then perform
clustering over the prototypes of the trained SOM. Finally, regional regression models are built over the
clusters (i.e. over the regions) of SOM prototypes, not over each SOM prototype as in local modelling.
Under the proposed framework, we build regional linear and nonlinear regression models. For the linear
case, we use autoregressive models with eXogenous (ARX) whose parameters are estimated using the
ordinary least-squares (OLS) method. Regional nonlinear ARX (NARX) models are built using the
Extreme Learning Machine network. Additionally, we develop robust variants of the proposed regional
models through the use of M-estimation, a statistical framework for handling outliers, since the OLS is
highly sensitive to them. Comprehensive performance evaluation of the proposed models on synthetic
and real-world datasets is carried out and the results compared to those achieved by standard global and
local models.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

System identification is concerned with the development of
regression models that describe the dynamics of a system from
measurements of its inputs and outputs. Knowing a model that
describes the diversity of behaviors that a dynamical system can
reveal, specially the nonlinear ones, is essential not only for theoretic
or applied research fields, but also for the process or control engineer
who is interested in understanding better the dynamics of the
system he/she is dealing with. As an ultimate goal, the resulting
model must approximate the actual system as faithfully as possible in
order to be used for several purposes, such as predictive control or
fault detection.

Modern industrial plants have been the source of challenging
tasks in dynamical system identification and control [2]. Designing
control systems to achieve the level of quality demanded by

current industry standards requires building accurate models of
the plant being controlled. Building accurate models requires
reliable data, usually in the form of input and output time series.
Once such data are available, they can be used for building direct
and/or inverse models of nonlinear systems by means of compu-
tational intelligence methods, such as neural networks [3–6],
Takagi–Sugeno–Kang fuzzy models [7–9] or hybrid systems
[10–14], to mention just a few possibilities.

Although several techniques for nonlinear dynamical system
identification have been proposed [15,16], they can be categorized
into one of the two following approaches: global and local modelling.
Global modelling involves the utilization of a single regressionmodel,
such as a feedforward or recurrent neural network model, that
approximates the whole mapping between the input and the output
of the system being identified. Global models constitute the main-
stream in nonlinear system identification and control [17–20,5].

Local modelling utilizes instead multiple models to represent
the input–output dynamics of the system of interest [21]. These
approaches have been a source of much interest because they have
the ability to fit to the local shape of an arbitrary surface (i.e. mapping).
This feature is particularly important when the dynamical system
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characteristics vary considerably throughout the input space. The
input space is usually divided into smaller, localized regions, each
one being associated with a simpler (usually linear) model. To estimate
the system output at a given time, a single model is chosen from the
pool of available local models according to some criteria defined on
the current input data. In the neural network literature, multiple local
models for system identification and control have been implemented
mostly either by means of the Local Model Network (LMN) [22–27] or
the Self-Organizing Map (SOM) [28–33,6,34,35].

The LMN uses basis functions to implement its localized nature,
similar to the standard Radial Basis Function networks (RBFN). In
LMNs, however, the output weights of a RBFN are replaced with
local functions of the inputs. As a consequence, due to the better
approximation properties of these local functions, the LMN model
does not require as many basis functions as the standard RBFN to
achieve the desired accuracy and, hence, the number of para-
meters is reduced dramatically.

The SOM is an unsupervised competitive learning algorithm
which has been commonly applied to clustering, vector quantiza-
tion and data visualization tasks [36–38]. When applied to multi-
ple local modelling, the SOM is used to partition the input–output
space into smaller regions, over which the local models are built.
The results reported on the aforementioned studies are rather
appealing, indicating that SOM-based local models can be feasible
alternatives to global models based on supervised neural network
architectures, such as the Multilayer Perceptron (MLP) and the
Extreme Learning Machine (ELM) [39].

The main advantage of the local modelling approach over the
global one relies on the fact that complex (e.g. nonlinear)
dynamics of the input–output mapping can be represented by
multiple simpler mappings. Another advantage is interpretability.
Since multiple local models are used, one can easily associate IF–
THEN rules with them in order to describe the current dynamics of
the system.

However, there is no free-lunch in the realm of local modelling.
The alleged flexibility of using multiple local models comes with
some costs. One of the main problems is that it is not straightfor-
ward to select the appropriate number of local models beforehand,
without any a priori information. An inappropriate selection may
cause the over- or under-identification of the original system
dynamics [40]. Another shortcoming is related to the occurrence
of dead or interpolating neurons1 after SOM training. In this case,
it is impossible to associate a local model with this type of neuron,
since there are no data points to estimate the parameters of the
corresponding local model.

To handle these shortcomings, we propose a novel approach to
system identification, called Regional Models (RM), that stands in
between the global and local modelling approaches.2 RM is
motivated by the two-level clustering approach introduced by
Vesanto and Alhoniemi [1] and can be thought as an extension of
their work to regression problems, more specifically, to nonlinear
dynamical system identification.

For this purpose, we first partition the input space using a single
SOM network with C prototypes, and then perform clustering using
the K-means algorithm [42] over the prototypes of the trained SOM
in order to find an optimal number Kopt (Kopt{C) of clusters of SOM
prototypes. The optimal number of clusters can be found by using
any cluster validation technique, such as the Davies–Bouldin index
[43,44]. A given cluster of SOM prototypes defines a region in the
input space formed by merging the Voronoi cells of the prototypes
belonging to that cluster. Finally, for each individual cluster of SOM

prototypes we build a regional regression model using only the data
vectors mapped to that specific cluster.

It is worth mentioning that by using Kopt regional models
instead of C local models, the RM approach is much more
parsimonious than the local modelling approach, i.e. few models
are required to faithfully describe the dynamics of the system of
interest (recall that Kopt{C). A second advantage is that the user
has not to worry too much about the specification of the number C
of SOM prototypes, since the subsequent application of K-means
clustering to the SOM prototypes makes the number of regional
models relatively decoupled from large variations in the value of C.
In other words, large variations in C do not produce large
variations in Kopt. Finally, a third advantage of the RM approach
over local modelling is that regional models can be constructed
even if dead/interpolating neurons occur after SOM training. This
is possible because any of the existing dead/interpolating neurons
will belong eventually to one out of the Kopt regions available.

Using the proposed RM framework, we develop regional linear
and nonlinear regression models. For the linear case, we use
autoregressive models with eXogenous (ARX) whose parameters
are estimated using the ordinary least-squares (OLS) method.
Regional nonlinear ARX (NARX) models are built using the
Extreme Learning Machine. Additionally, we develop robust var-
iants of the proposed regional models through the use of M-
estimation, a robust statistics framework introduced by Huber
[45,46] for handling outliers, since the OLS is highly sensitive to
them. Comprehensive performance evaluation of the proposed
models on synthetic and real-world datasets is carried out and the
results compared to those achieved by standard global and local
models.

The remainder of the paper is organized as follows. In Section 2,
we briefly review the basics of dynamical system identification
using ARX and NARX models. In Section 3, the SOM network and its
learning process are described. In Section 4, the regional modelling
framework for nonlinear system identification is introduced. In
Section 5 we present the fundamentals of M-estimation and its
use in the context of regional modelling. Computer simulations and
results are presented and discussed in Section 6. The paper is
concluded in Section 7.

2. Basics of dynamical system identification

Let us assume that the dynamical system we are dealing with
can be described mathematically by the following ARX model [47]:

yðkÞ ¼ a1yðk�1Þþ⋯þapyðk�pÞþb1uðk�1Þþ⋯þbquðk�qÞ;

¼ ∑
p

j ¼ 1
ajyðk� jÞþ ∑

q

l ¼ 1
bluðk� lÞ; ð1Þ

where uðkÞAR and yðkÞAR denote, respectively, the input and
output of the model at time step k, while qZ1 and pZ1 (qrp)
are the input-memory and output-memory orders, respectively.
The coefficients ajAR, j¼ 1;…; p and blAR, l¼ 1;…; q are the
parameters of the model to be estimated using the available data.

By defining the input vector xðkÞARpþq at time step k and the
vector of parameters θARpþq as

xðkÞ ¼ ½yðk�1Þ ⋯ yðk�pÞjuðk�1Þ ⋯ uðk�qÞ�T ; ð2Þ

θ¼ ½a1 ⋯ apjb1 ⋯ bq�T ; ð3Þ
we can write the output of the ARX model in Eq. (1) simply as

yðkÞ ¼ θTxðkÞ: ð4Þ
The parameter vector θ is commonly estimated by means of the

ordinary least-squares (OLS) method, which leads to the following

1 Neurons whose prototypes are located at positions without data points.
2 A previous shorter version of this work [41] has been published in the 9th

Workshop of Self-Organizing Maps (WSOM'2012), held in Santiago, Chile.
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