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a b s t r a c t

Prototype based vector quantization is usually proceeded in the Euclidean data space. In the last years, also
non-standard metrics became popular. For classification by support vector machines, Hilbert space
representations, which are based on so-called kernel metrics, seem to be very successful. In this paper
we show that gradient based learning in prototype-based vector quantization is possible by means of
kernel metrics instead of the standard Euclidean distance. We will show that an appropriate handling
requires differentiable universal kernels defining the feature space metric. This allows a prototype adaptation
in the original data space but equipped with a metric determined by the kernel and, therefore, it
is isomorphic to respective kernel Hilbert space. However, this approach avoids the Hilbert space
representation as known for support vector machines. We give the mathematical justification for the
isomorphism and demonstrate the abilities and the usefulness of this approach for several examples
including both artificial and real world datasets.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Supervised and unsupervised vector quantization for clustering
and classification is an ongoing topic of research. Among other
techniques, prototype based models have gained a great popular-
ity and were successfully applied in many areas.

Famous unsupervised such models are the self-organizing map
(SOM, [43]), neural gas (NG, [52]) or respective fuzzy variants like
fuzzy-k-means (FCM, [8,9]). These methods are mainly applied
for data clustering and compression or visualization. Although
clustering is an ill-posed problem, cost functions for these models
exist, which are usually based on the squared Euclidean descrip-
tion error. For the SOM, a cost function only exists for the Heskes-
variant [35].

Supervised approaches comprise the family of learning vector
quantizers (LVQ, [43]) as well as support vector machines (SVM,
[72]). The intention of LVQ models is to generate class typical
prototypes whereas the prototypes in SVMs define the class
borders and are denoted as support vectors. Original LVQ is based
on a heuristic for prototype adaptation. Variants like robust soft
LVQ (RSLVQ, [77]) or generalized LVQ (GLVQ, [69]) introduce cost
functions reflecting the LVQ-heuristic. Yet, the Euclidean view is
kept. SVMs and GLVQ are both margin classifiers: SVMs relies on

the class separation margin [85,80] whereas GLVQ optimizes the
hypothesis margin [19].

Recent developments in the field address the utilization of non-
Euclidean metrics in vector quantization to improve the model
performance for domain-specific problems like processing of
functional data, e.g. spectra, time series, etc. [38,57,88], or better
interpretability of the adapted models (relevance/matrix learning,
[31,73]). These metrics can be subsumed as non-standard metrics.
If the underlying cost function of the vector quantizer is mini-
mized by a gradient descent learning scheme, the employed
dissimilarities or distance measures are required to be differenti-
able [48].

One of the most challenging ideas in classification learning
is the kernel trick realized in SVMs. According to this idea, the
data as well as the prototypes are implicitly mapped into a high-
dimensional (may be infinite) feature mapping Hilbert space
(FMHS), which is uniquely determined by the kernel [72,84]. The
dissimilarities, however, are still calculated using the original data
whereas model adaptation is processed in the dual space of the
FMHS [20]. The feature mapping is non-linear in general. Fre-
quently, it offers a great flexibility and good separation possibility
of the mapped data in the FMHS. This mapping, however, makes
it more difficult to interpret the model, because the prototypes
(or support vectors for SVM) are now living in the, may be infinite-
dimensional, FMHS. Moreover, the support vectors are not typical
representatives of the classes, as mentioned before.

Several variants of LVQ were established also integrating the
kernel mapping concept in those models while keeping the idea of
class-typical prototypes (Kernel GLVQ, KGLVQ) [63,62]. Yet, these
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models also have to deal with the possible infinite dimension of
the mapping space. Usually, the Nystrøm-approximation techni-
que is applied to obtain a finite representation [71,62], which
obviously leads to an information loss for these models in general.

In this paper we offer an alternative for the integration of
kernels in prototype based vector quantization. For this purpose,
we consider differentiable universal kernels determining a new
differentiable metric in the data space to be used in the vector
quantization model as suggested in [91,39]. Thus, gradient based
learning becomes available, whereby the topological structure of
the new metric space is isomorphic to the FMHS.

The paper is structured as follows: first we briefly review
gradient based learning for famous vector quantization models.
Here, we focus on SOM/NG and GLVQ as prominent examples
for unsupervised and supervised learning. In this framework we
particularly advert to the integration of differentiable dissimilarity
measures in these models. We segue from differentiable distance
measures to differentiable kernel metrics. Thereafter, we present
the theoretical justification that the respective data space is
isomorphic to the FMHS related to this kernel. Exemplary artificial
as well as real world applications and concluding remarks com-
plete this contribution.

2. Differentiable dissimilarities in gradient based
vector quantization

Vector quantization can be distinguished into unsupervised and
supervised approaches as mentioned in the Introduction. Unsuper-
vised models are usually applied for data compressing and cluster-
ing. Supervised approaches are related to classification and
regression. Here we focus on Hebbian learning based models.

2.1. Self-organizing maps and neural gas as prominent unsupervised
vector quantizers

Vector quantization, based on the minimization of some
reconstruction error E for a given dataset VDRn of vectors v with
respect to set of prototypes W ¼ fwkgkAA, is well-known since
many years [51,50,83]. There, A is a finite index set. Prominent
examples are the k-means [26,32,49,51,94], the fuzzy-k-means
(FCM, [8,9,22,23]) or neural gas (NG, [52]). Self-organizing maps
differ from these approaches (SOMs, [40,41,43]) in two ways:
first, the index set A is equipped with a topological structure
defining a distance ‖r�r0‖A in the set A for r; r0AA. Usually,
rectangular or hexagonal lattices are preferred. However, other
structures like graphs or growing structures are also under
consideration [6,36,81]. This property allows the impressive
visualizations of high-dimensional data spaces under the assump-
tion of topographic mapping [87,93]. Second, the original SOM
does not minimize any cost function [24]. Yet, the variant of
Heskes overcomes this drawback and has to be taken in this
context [34].

Usually, the reconstruction error is given in terms of the dis-
similarity measure dðv;wkÞ between data and prototypes, usually
assumed to be the squared Euclidean distance. During the last years,
non-standard metrics have gained great popularity for faithful data
processing [17,68,88]. After learning, the distribution Q ðWÞ of the
prototypes in unsupervised vector quantization reflects the data
density PðVÞ [5,21,29,55,66,86,95]. Obviously, this relation also
depends on the underlying dissimilarity in the data space [86,89].

If gradient descent learning based on the given cost function is
favored, the dissimilarity measure is required to be differentiable
with respect to the prototypes wk. For example, the cost function

of the Heskes variant of SOM is

ESOM ¼
Z

PðvÞ ∑
rAA

δsðvÞr ∑
r0 AA

hSOMσ ðr; r0Þ
2KðσÞ dðv;wr0 Þ dv ð2:1Þ

with the so-called neighborhood function in A

hSOMσ ðr; r0Þ ¼ exp �‖r�r0‖A
2σ2

� �

with neighborhood range σ [34]. The neighborhood function
depends on the topological structure of the index set A by the
distance ‖r�r0‖A. Further, the Kronecker symbol δsðvÞr assigns a
data vector v to the winning unit by

sðvÞ ¼ argmin
rAA

∑
r0 AA

hSOMσ ðr; r0Þ � dðv;wr0 Þ
� �

:

KðσÞ is a normalization constant depending on the neighborhood
range σ. The stochastic gradient prototype update for the Heskes-
SOM with cost function ESOM is given as

Δwr ¼ �εhSOM
σ ðr; sðvÞÞ∂dðv;wrÞ

∂wr
: ð2:2Þ

depending on the derivatives of the used dissimilarity measure
dðv;wrÞ.

If the aspect of projective mapping can be ignored, while
keeping the neighborhood cooperativeness aspect to avoid local
minima in vector quantization, then the Neural Gas algorithm (NG)
is an alternative to SOM proposed by Martinetz [52]. The cost
function of NG to be minimized writes as

ENG ¼ 1
2Cσ

∑
jAA

Z
PðvÞhNGσ ðv;W ; jÞ dðv;wjÞ dv ð2:3Þ

with the neighborhood function

hNGσ ðv;W ; iÞ ¼ exp �kiðv;WÞ
σ

� �
; ð2:4Þ

operating in the data space and is determined by the rank function

kiðv;WÞ ¼∑
j
θðdðv;wiÞ�dðv;wjÞÞ: ð2:5Þ

The function θðxÞ is the Heaviside function and Cσ is a constant
depending on the neighborhood range σ. The prototype update
obtained from the stochastic gradient of the cost function ENG
results in

Δwi ¼ �εhNG
σ ðv;W ; iÞ∂dðv;wiÞ

∂wi
ð2:6Þ

and is similar to that of SOM. The winner mapping rule slightly
changes to

sðvÞ ¼ argmin
jAA

ðdðv;wjÞÞ ð2:7Þ

compared with SOM but remains a winner-take-all rule. It turns out
that NG is a robust and appropriate variant of standard k-means
frequently achieving better results in shorter time due to the neigh-
borhood cooperativeness in learning [18,52].

We remark that both gradient descent learning updates (2.2)
and (2.6) contain the derivatives ∂dðv;wiÞ=∂wi of the dissimilarity
measure. According to the winner determination together with the
neighborhood cooperativeness in learning, SOM as well as NG
realizes an Hebbian learning paradigm [67].

2.2. Learning vector quantization for supervised vector quantization

Prototype based classification learning in the context of vector
quantization is mainly influenced by the pioneering work of Kohonen
establishing the family of learning vector quantizers (LVQ, [44]) for
supervised learning. It is based on a heuristic to approximate Bayes
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