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a b s t r a c t

Due to its intuitive learning algorithms and classification behavior, learning vector quantization (LVQ)
enjoys a wide popularity in diverse application domains. In recent years, the classical heuristic schemes
have been accompanied by variants which can be motivated by a statistical framework such as robust
soft LVQ (RSLVQ). In its original form, LVQ and RSLVQ can be applied to vectorial data only, making it
unsuitable for complex data sets described in terms of pairwise relations only. In this contribution, we
address kernel RSLVQ which extends its applicability to data which are described by a general Gram
matrix. While leading to state of the art results, this extension has the drawback that models are no
longer sparse, and quadratic training complexity is encountered due to the dependency of the method
on the full Gram matrix. In this contribution, we investigate the performance of a speed-up of training by
means of low rank approximations of the Gram matrix, and we investigate how sparse models can be
enforced in this context. It turns out that an efficient Nyström approximation can be used if data are
intrinsically low dimensional, a property which can be efficiently checked by sampling the variance of
the approximation prior to training. Further, all models enable sparse approximations of comparable
quality as the full models using simple geometric approximation schemes only. We demonstrate the
behavior of these approximations in a couple of benchmarks.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Learning vector quantization (LVQ) as proposed by Kohonen
[17] more than 20 years ago still constitutes a popular and widely
used classification scheme, in particular due to its intuitive train-
ing algorithm and classification behavior. The fact that the classi-
fier represents its classification prescription in a compact way in
terms of a small number of prototypical representatives enables its
applicability in particular in the medical domain, where human
insight is often crucial, or in online learning scenarios such as
online vision systems where a compact representation of the
already gathered information is required for further adaptation
[1,2,16,8,15]. While original LVQ has been proposed on heuristic
grounds, mimicking learning paradigms in biological systems,
quite a few variants have been proposed in the last years which
can be derived based on mathematical cost functions. Notably,
generalized LVQ [23] relies on a cost function which can be linked
to large margin classifiers [24], enabling a particularly robust
classification scheme. As an alternative, robust soft LVQ (RSLVQ)
models the data in terms of a mixture of Gaussians in a

probabilistic framework. Training can be derived thereof as like-
lihood ratio optimization [26]. Interestingly, both variants yield to
training algorithms which are very similar to original LVQ2.1 as
proposed by Kohonen [17]. The formulation as cost function allows
to easily integrate a larger flexibility into the prescriptions such as
the concept of metric learning [24,26].

Note that LVQ schemes are in some sense complementary to
popular classification schemes as provided e.g. using support
vector machines (SVM): while both techniques constitute large
margin approaches thus providing excellent generalization ability,
one of the strengths of SVM is its very robust behavior due to a
convex cost function with unique solutions. LVQ, on the contrary,
typically possesses local optima, and optimization using gradient
techniques is usually necessary. However, while SVM represents
models in terms of support vectors, which constitute points at the
boundary, the number of which typically scales with the size
of the training set, LVQ represents solutions in terms of few
typically prototypes only, resulting in an improved interpretability
and classification time. On the down-side, SVM can often repre-
sent the boundaries in more detail because of its focus on the
boundaries, while LVQ classifiers stay with more simple models.
Because of the need of interpretable models in domains such as
biomedical applications where the ultimate responsibility lies
with the human applicant, however, sparse interpretable models
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such as LVQ classifiers enjoy an increasing popularity among
practitioners.

In this contribution, we will focus on the approach robust soft
LVQ as proposed in [26] since it offers an intuitive representation
of data in terms of a mixture of labeled Gaussians. Being a
prototype based approach, LVQ provides a direct interface for the
applicant, who can directly inspect the prototypes in the same way
as data. Regarding the crucial impact of interpretability of the
given models in many fields, this fact constitutes an important
benefit of LVQ classifiers [28].

In many application areas, data sets are becoming more and
more complex and additional structural information is often
available. Examples include chemical structures, biological net-
works, social network data, graph structures, dedicated images,
and heterogeneous web data. Often, dedicated similarity measures
have been developed to compare such data; popular examples for
widely used dissimilarity or similarity measures for such objects
are dynamic time warping for time series, alignment for biological
sequences or text, divergences for distributions, functional metrics
for functional data such as spectral data, graphs or tree kernels for
structured objects, and many more. These data are no longer
explicitly represented as Euclidean vectors, rather, pairwise simi-
larities or dissimilarities are available.

LVQ in its original form has been proposed for vectorial data
only, since it heavily relies on the possibility to pick prototypes as
members of the data space and to adapt these representatives
smoothly by means of vectorial updates triggered by the data.
Hence LVQ is not directly applicable to complex domains where
data are represented in terms of pairwise relations only.

In the last years, a few approaches have been developed
which extend LVQ schemes or, more generally, prototype based
approaches beyond the vectorial setting. Thereby, most techniques
rely on an underlying cost function for which an alternative
optimization scheme in the non-vectorial setting is proposed. As
an example, unsupervised prototype based methods can rely on
exemplars, i.e. they restrict the location of prototypes to the
position of given data points, where dissimilarities are well
defined. Training takes place in a discrete space, partially relying
on appropriate assignment probability to achieve greater robust-
ness, see e.g. the approaches [18,7,4]. These techniques, however,
have the drawback that a smooth adaptation of prototypes is no
longer possible and problems can occur especially if the given data
are sparse. More general smooth adaptation is offered by relational
extensions such as relational neural gas or relational learning
vector quantization [12]. Kernelization constitutes another possi-
bility such as proposed for neural gas, self-organizing maps, or
different variants of learning vector quantization [3,22]. Recently, a
kernel variant of RSLVQ has been proposed which matches the
classification performance of support vector machines in a variety
of benchmarks [14]. By formalizing the interface to the data as a
general similarity or dissimilarity matrix, complex structures can
be dealt with, relying on dedicated structure kernels or an explicit
Gram matrix, for example [21,10,9].

In this contribution, we will focus on kernel RSLVQ (KRSLVQ)
which will be extensively tested for benchmark data sets in
comparison to popular alternatives such as k-nearest neighbor
classifiers and the support vector machine. KRSLVQ allows to
priorly specify the model complexity, i.e. number of prototypes
which represent the classifier.

Kernel RSLVQ, unlike RSLVQ, represents prototypes implicitly
by means of a linear combination of data in kernel space. This has
two drawbacks: on one hand, prototypes are no longer directly
interpretable, since the vector of linear coefficients is usually
not sparse. Hence, in theory, all data points can contribute to the
prototype. On the other hand, an adaptation step does no longer
scale linearly with the number of data points, rather, quadratic

complexity is required. This makes the technique infeasible if
large data sets are considered. In this contribution, we propose
two different approximation schemes and we investigate the
effect of these techniques in a variety of benchmarks [13]. First,
we consider the Nyström approximation of Gram matrices which
has been proposed in the context of SVMs in [29]. It constitutes a
low rank approximation of the matrix based on a small subsample
of the data. Assuming a fixed size of the subsample, a linear
adaptation technique results. This approximation technique
accounts for an efficient update, but prototypes are still distrib-
uted. As an alternative, we investigate an approximation of
prototypes in terms of their k closest exemplars after or while
training. This way, sparse models are obtained, albeit the techni-
que still displays quadratic complexity. The effects of these
approximations on the accuracy are tested in a couple of bench-
marks.

Now we first review RSLVQ and its kernel variant. We explain
the Nyström approximation and its incorporation into kernel
RSLVQ. Afterwards, we explain different sparse approximations
of the prototypes. We test the performance using benchmarks
similar to [6].

2. Kernel robust soft learning vector quantization

Robust soft LVQ has been proposed in [26] as a probabilistic
counterpart to Learning vector quantization [17]. It models data by
a mixture of Gaussians and derives learning thereof by means of a
maximization of the log likelihood ratio of the given data. In the
limit of small bandwidth, a learning rule which is similar to LVQ2.1
is obtained.

Assume that data ξkARn are given accompanied by labels yk. A
RSLVQ network represents a mixture distribution, which is deter-
mined by m prototypes wjARn, where the labels of prototypes
cðwjÞ are fixed. σj denotes the bandwidth. Then, mixture compo-
nent j induces the probability

pðξjjÞ ¼ constj � expðf ðξ;wj;σ2
j ÞÞ ð1Þ

with normalization constant constj and function f

f ðξ;wj;σ2
j Þ ¼ � Jξ�wj J2=σ2

j : ð2Þ

The probability of a data point ξ is given by the mixture

pðξjWÞ ¼∑
j
PðjÞ � pðξjjÞ ð3Þ

with prior probability P(j) of mixture j and parameters W of the
model. The probability of a data point ξ and a given label y is

pðξ; yjWÞ ¼ ∑
cðwjÞ ¼ y

PðjÞ � pðξjjÞ: ð4Þ

Learning aims at an optimization of the log likelihood ratio

L¼∑
k
log

pðξk; ykjWÞ
pðξkjWÞ : ð5Þ

A stochastic gradient ascent yields the following update rules,
given a data point ðξk; ykÞ
Δwj ¼ α�

ðPyðjjξkÞ�PðjjξkÞÞ � constj � ∂f ðξk;wj;σ2
j Þ=∂wj if cðwjÞ ¼ yk

�PðjjξkÞ � constj � ∂f ðξk;wj;σ2
j Þ=∂wj if cðwjÞayk

8<
:

ð6Þ
α40 is the learning rate. The probabilities are defined as

PyðjjξkÞ ¼
PðjÞexpðf ðξk;wj;σ2

j ÞÞ
∑cðwjÞ ¼ yj PðjÞexpðf ðξk;wj;σ2

j ÞÞ
ð7Þ
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