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a b s t r a c t

Touch-free gesture technology opens new avenues for human–machine interaction. We show how self-
organizing maps (SOM) can be used for hand and full body tracking. We use a range camera for data
acquisition and apply a SOM-learning process for each frame in order to capture the pose. In a next step
we introduce an extension of the SOM to 1D and 2D segments for an improved representation and
skeleton tracking of body and hand. The proposed SOM based algorithms are very efficient and robust,
and produce good tracking results. Their efficiency allows to implement these algorithms on embedded
systems, which we demonstrate on an ARM-based embedded platform.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The challenge of human hand/body tracking and pose estimation
has gained much attention during the last years, mainly driven by
the mainstream interest toward building usable gestural interfaces
for consumer applications. This was seen with the introduction of
gaming consoles that can track a user's hand gestures (NintendoWii)
or body (Microsoft Kinect), which showed that gesture interfaces
can be used to create rich interactive experiences. Hand tracking
alone can be used in a wide variety of applications and represents a
milestone in human–machine interaction. A major catalyst was the
introduction of new technologies and devices designed for 3D image
acquisition. Depth cameras provide a more favorable framework for
tracking algorithms, simplifying the task of three-dimensional model
fitting, giving algorithms that use them an edge over 2D image
processing techniques.

Nevertheless, these are both difficult problems, especially
estimating the hand pose: the hand itself is a complex object,
having an extremely large state space due to its 27 degrees of

freedom [1]. Because of this complexity, its projection in images
often involves self-occlusions which, coupled with the chromatic
uniformity of the skin, makes segmentation and feature detection
very difficult. With speeds reaching up to 5 ms�1 for translation
and 3001s�1 for wrist rotation [2], consecutive frames of a moving
hand can have very little in common (especially with a slow
camera frame rate), making it a difficult object to track. Adding to
these difficulties, the algorithms have to cope with various back-
grounds and lighting conditions.

3D cameras can alleviate some of the difficulties described
above, having multiple advantages over standard color image
processing. A critical step of any pose estimation algorithm is
object segmentation. By having access to the depth map of the
scene, objects can be segmented accurately based on their shape
and distance to the camera, regardless of texture, skin color or
background clutter. With active 3D technologies (such as time-of-
flight or structured light), there is even no need for a uniform or
consistent scene illumination. This is a very useful feature for real-
world applications, where consumer devices are being used by a
variety of people in a variety of environments. Our work focuses
on building a hand/body pose estimation and tracking algorithm
for such a 3D camera, that is both accurate and has low com-
putational costs.

In this article we present an extension of the hand pose
estimation method proposed in [3], as well as a practical imple-
mentation of the algorithm. It is all based on the original work
introduced in [4], a novel approach to pose estimation by the use
of self-organizing maps (SOM) [5] to fit a topology of the human
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upper body inside a 3D point cloud. We show that this topology
can be successfully extended to a full body as well as a human
hand. A further extension of the algorithm is presented, in which
the original SOM is extended to include not only nodes but also
the segments and planes between the nodes of the topology.
This has the advantage of requiring less nodes than the original
topology, offering a more realistic representation of the human
hand and being more stable overall.

The algorithms are of a low enough computational cost that
they can be implemented on an embedded platform and used to
track subjects in real time. We will show an implementation of
both the hand/body SOM and the segment-plane extension for the
hand on an OMAP-4430 powered Pandaboard, using time-of-flight
(PMD camboard) or structured light (Microsoft Kinect) cameras as
an input device for 3D data. Our algorithm is able to track the user
at the native framerate of the camera.

2. Related work

The most commonly used methods to gather accurate data for
skeleton tracking are marker-based motion capture systems in the
case of the whole-body skeleton or by the use of a “data glove” for
hand pose estimation [6]. These methods are cumbersome and can
be used only in controlled environments. Thus, marker-less pose
estimation is a heavily researched area in image processing —

recent surveys cite dozens of papers [2] on hand pose estimation
and several hundred [7] on human motion capture and analysis.

For example, the authors of [8] use kinematic models and build
a hand state model, which consists of a set of lines and points
generated by the projection of the hand model to the image plane.
Hand pose estimation based on features derived from projections
of the hand and its shadow is presented in [9]. The method
requires controlled background and lighting and is susceptible to
occlusion. In [10] and [11], the authors use a feature extraction
approach based on Curvature Scale Space to achieve translation,
scale and rotation invariant recognition of hand postures. Again,
the method is tested in a controlled environment, as it requires an
accurate segmentation of the hand contour.

The authors of [12] introduce a machine learning architecture
for matching image features to 3D hand example poses, which
requires to solve an optimization problem based on Bayes' rule.
Another approach is to estimate the hand pose with a database of
synthetic hand images. For instance, in [13] an indexed image
database is used to retrieve the closest hand match, with an
adapted chamfer distance and line matching algorithm. In [14], the
authors implement a cascade of increasingly complex classifiers to
determine the hand pose from synthetic training data. In order to
better handle occlusions, particle filters can be used. In [15], the
authors apply a meta-descent algorithm to minimize the distance
between a predicted position and the observed position, while
particle filters predict new sample positions and help the optimi-
zation algorithm to recover from local minima. As shown in [16],
the combined usage of intensity images and range information
provides a good framework for body tracking.

Regarding performance, most algorithms surveyed by Erol et al.
[2] stay below 30 frames per second (which we regard as being real-
time), with only one exception [17]. Other solutions leverage the
computing power of the GPU in order to achieve high frame rates
[18–20]. Most existing approaches are aimed at high-performance
desktop machines.

3. The SOM tracking algorithm

The node-based SOM tracking algorithm (which we will refer
from now on as the Standard SOM Algorithm) starts with the

initialization of its network weights, followed by the iteration of
two steps: the competition and the update of the weights. At every
iteration, a sample point from the dataset is randomly chosen.
First, during the competition phase, a winner node (i.e. the weight
with the minimum Euclidean distance to the sample point) is
computed.

Given a network with n neurons and a sample point xAR3, we
determine the winner node î as follows:

î ¼ arg min
i
‖x�wi‖2

� �
; i¼ 1;…;n ð1Þ

with wiAR3 being the weight of node i. Next, the update phase
aims at decreasing the distance between the winner-node weight
and the sample point, by an amount given by the learning rate ϵðtÞ.
First, let us define the learning rate function as

ϵðtÞ ¼ ϵi
ϵf
ϵi

� �t=tmax

; ð2Þ

where ϵi is the initial learning rate, ϵf is the final learning rate, t is
the current iteration, and tmax is the maximum number of itera-
tions performed on the network. Then, the weightwî is updated at
step t according to

wî ðtþ1Þ ¼wî ðtÞþϵðtÞðx�wî ðtÞÞ: ð3Þ

The standard SOM algorithm then also applies a neighborhood
update, in the sense that not only the winner-node weight is
updated, but also the weights of the neighbor-nodes (in general
with a smaller learning rate). In our case we updated only the
direct topological neighbors of the winner node according to (3),
but with a learning rate of ~ϵðtÞ ¼ ϵðtÞ=2.

These steps are repeated for hundreds or thousands of itera-
tions. This makes the skeleton graph fit to the point cloud and stay
within its confines.

4. Topology expansion

First, we expand the 44-node upper body topology presented
in [4] (Fig. 1a) to two topologies, one representing the whole body
(Fig. 1b), and the other representing the human hand (Fig. 1c).
The models were chosen so they mimic the anatomical landmarks
of their real-world counterparts – limbs and joints for the body
and phalanges and interphalangeal joints for the hand. The rigid
bodies (torso and palm) are modeled as a mesh. Both produce
good qualitative results in our implementation. The end results
achieved with the standard SOM for the hand and body are shown
in Figs. 2 and 3, showcasing the method's robustness.

It can be seen that the hand tracker is able to cope with missing
data (Fig. 2b,c as white areas on the palm), the skeleton's topology
remaining stable, the fingers being retracted in the palm. This is
considered to be correct behavior, as the fingers will be reported as
“bent” to a subsequent gesture recognition algorithm.

For the full-body tracker, the topology is robust enough to
perform a good fitting over the subject's body, even when there is
occlusion occurring. This is shown in Fig. 3b–d: it can be seen that
when the user crosses his arms in front of him the skeleton retains
its geometry afterwards, even if one of the arms occludes the
other. This is true also for the rest of the topology nodes, such as
the torso. Fig. 3a shows how the skeleton tracks the body shape in
3D, following the user's leg even though it is not in the same plane
as the body.

Such configurations would be very hard to track using just a
2D image, particularly because of the juxtaposition of the hands
and torso. This issue is resolved by using a 3D camera, which can
differentiate between surfaces of various depths.
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