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a b s t r a c t

Stochastic approaches such as evolutionary algorithms have been widely used in various science and
engineering problems. When comparing the performance of a set of stochastic algorithms, it is necessary
to statistically evaluate which algorithms are the most suitable for solving a given problem. The outcome
of statistical tests comparing NZ2 processes, where N is the number of algorithms, is often presented in
tables. This can become confusing for larger numbers of N. Such a scenario is, however, very common in
both numerical and combinatorial optimization as well as in the domain of stochastic algorithms in
general. In this letter, we introduce an alternative way of visually presenting the results of statistical tests
for multiple processes in a compact and easy-to-read manner using a directed acyclic graph (DAG), in the
form of a simplified Hasse diagram. The rationale of doing so is based on the fact that the outcome of the
tests is always at least a strict partial order, which can be appropriately presented via a DAG. The goal of
this brief communication is to promote the use of this approach as a means for presenting the results of
comparisons between different optimization methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the field of numerical and/or combinatorial optimization,
simulation experiments are often used to determine which method
is the best for solving a given problem. Broadly speaking, techniques
for addressing different kinds of optimization problems can be
classified into two major classes: exact and stochastic algorithms.
The latter is typically called into play when the problems to be
tackled are large, complex, dynamic, or involve the optimization of
more than one objective function (see [5,6,9,20]).

Due to the stochastic nature of the algorithms, however, the
optimization results could vary every time a particular algorithm
of this class is executed. As such, it becomes mandatory to run the
algorithm several times on the same problem instance and collect
statistics of the results (median, interquartile range, mean, stan-
dard deviation, etc.). These statistics can only give a very rough
impression of the algorithm's behavior, as pointed out by Weise
et al. [23]. When comparing the performance of two or more
stochastic algorithms on a problem instance, statistical tests (e.g.,
the Mann–Whitney U test or Wilcoxon rank-sum test, t-test,
Kruskal–Wallis test, etc.) are required to claim with a certain level
of confidence as to which algorithm is the best. The conclusion
that can be drawn from such tests is usually something like

“With a probability to err of no more than 0.01 (i.e., at a
significance level of 1%), we can state that ‘Method A’ outper-
forms ‘Method B’.”

or

“At a significance level of 5% (or with a maximally allowed type
I error probability of 0.05), no statistically significant difference
can be detected between the performance of ‘Method A’ and
‘Method B’.”

Instead of following the standard way of presenting statistical test
results using tables, in this letter we discuss a very simple graphical
representation to visualize the outcome of statistical tests used for
comparing N processes (or stochastic distributions) based on datasets
sampled from them. This simple approach was, to the best of our
knowledge, first conceived by Burda [3], and has thereafter been
adopted or independently used by several researchers in their work
(e.g., [18,20–22,25]). Recently, software implementations of the
approach have been made available by Burda [4] and Voigt et al.
[19]. The positive aspect of the approach is the simplicity and clarity
of its presentation, although there has also been reservation from
some readers and reviewers about its non-standard way of repre-
senting the data. The goal of this letter is therefore to promote the
use of this approach to a wider audience.
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2. An illustration of N(N�1)/2 comparisons

Generally, statistical tests [7,12,13,17] are tools to compare pro-
cesses that produce measurable outputs, which can be represented
as real numbers. Often, two such processes P1 and P2 are compared
with the goal to find which of the two tends to produce smaller (or
larger) outputs. Given finite samples (observations) of these pro-
cesses, this question can be answered with a certain level of
confidence by applying statistical tests such as the Mann–Whitney
U test [14]. Based on a significance level α, i.e., a threshold for the
highest acceptable probability to make a false statement, a significant
difference between P1 and P2 is either confirmed or rejected.

If NZ2 processes P1, P2,…, PN are observed, then the previous
question can be extended to finding which of them tends to produce
the smallest elements and to detect interrelations. One way to do this
is to compare each process with every other process, again using the
statistical test of choice. There are two issues with this procedure:
(1) it requires provisions such as the conservative Bonferroni correc-
tion [8] or post hoc methods like a Nemenyi test [16] after a
Friedman test [10] to avoid statistical errors1 (see Demšar [7] or
García and Herrera [11] for detailed discussions of more sophisticated
statistical approaches and better recommendations); (2) it will result
in (at most) N(N�1)/2 outcomes, which are hard to visualize. Here,
we focus on the latter issue. A common way to represent the
outcomes is to use a table (matrix) Ti,jA{þ , � , 0}. A value of Ti,
j¼þ in the ith row and jth column means that process Pi has
significantly larger outputs than process Pj, a “�” stands for smaller
outputs, and 0 symbolizes that no significant difference could be
detected (at the given significance level α).

Table 1 shows an example of how a common tabular illustration of
the comparison results for eleven processes P1–P11 could look like.
Only the upper triangle of the table needs to be populated since
Ti;j ¼ þ ) Ti;j ¼ � ; Ti;j ¼ � ) Ti;j ¼ þ ; Ti;j ¼ 0 ) Ti;j ¼ 0; and Ti;j

¼ 0 for all i, jA1…N. From the example, it is clear that with the
increasing number of processes, it becomes more difficult to recognize
the order of the processes according to the tests from such a table.

3. Graph-based notation

3.1. An example

Clearly, a full set of N(N�1)/2 test results defines a partial order on
the compared processes. Besides using a table or matrix, such a partial
order can be illustrated in the form of a directed acyclic graph (DAG),
as sketched in Fig. 1(a). Such graphical representations of partial orders
are known as the Hasse diagrams [1,2] and have been used in the area
of education [25]. In our case, each process can be represented as a
node in a graph. Here, Ti,j¼þ will result in a directed edge from the
node labeled with Pj to the node labeled with Pi. A “�” results in a
directed edge into the opposite direction and a “0” is represented by
having no edge between the corresponding nodes.

Since the test results form a transitive order, edges that are
sufficiently explained by transitivity can be omitted in the graph (and
actually, the corresponding tests do not need to be performed in the
first place). Hence Fig. 1(a) does not contain an arrow from node P2 to
P1, since that one is already subsumed by the arrow from P2 to P11
and from P11 to P1. The graph sketched in Fig. 1(a) is easier to read
than Table 1. The Hasse diagram-based notion can be further
simplified by combining those nodes for which all incoming arrows
come from the same origins and all outgoing arrows target the
same nodes.

Fig. 1(b) represents such a simplification. It is our strong belief that
this representation could be a good alternative to the tabular
representation, because of its compactness, clarity, and ease of use.
From Fig. 1(b), it can immediately be seen that processes P1 and P7
tend to have the largest outputs while P4 has the smallest. There is no
significant difference between P9 and P6 or P3, but P9 tends to produce
smaller outputs than P10. The outputs of P5 tend to be larger than those
of P3, but there are no significantly differences from those of P2.

3.2. Formal definition

Given a set P of N processes Pi: iA1…N and a statistical test
result matrix Ti,jA{þ , � , 0}8 i, jA1…N, the graph-based repre-
sentation G is defined as follows:

1. For each PiAP, there exists exactly one node labeled with Pi in
G.

2. A node may be labeled with a set S of multiple process names if
and only if 8Pi, PjAS) (8PkAP) Ti,k¼Tj,k and Tk,i¼Tk,j) holds.

3. There exists a directed edge from the node labeled with Pj to
the node labeled Pi if and only if
(a) Ti,j¼þ (and, hence, Tj,i¼�) and
(b) :(PkAP: (Ti,k¼þ)4(Tk,j¼þ).

The graph can be created by using existing tools such as those
of Burda [4] and Voigt et al. [19]. Alternatively, one can first create
a graph that contains a directed edge for each Ti,j¼þ . This graph
can then be iteratively simplified by deleting edges for which rule
3 above holds and merging nodes according to rule 2 until further
reduction is possible. Since the manual layout of larger graphs is
tedious, the resulting graph could be represented in a text-based
format like the DOT language, which then can be rendered by tools
such as Graphviz (see http://www.graphviz.org/).

3.3. How to use

We want to emphasize that a diagram such as Fig. 1 should
always be accompanied by a descriptive note stating the applied
test and the test's configuration, the significance level, and the
meaning of the presence of a directed edge in the graph. An
example for this notion could be

“Fig. 1(b) shows the outcome of the application of a two-tailed
Mann–Whitney U test with the Bonferroni correction and a
significance level of 1% (type I error probability r0.01) to the
data sampled from processes P1 to P11. A directed edge from a
node Pi to a node Pj means that, according to the applied test, Pi
produces {larger/smaller/better} outcomes than Pj.”

Such a description text is not longer than what would be
needed to properly define the meaning of the tabular result
expression (see the example in Table 1).

4. Other visualization techniques

Before we end, it is worth pointing out that there exist several
other visualization techniques for illustrating statistical test
results. However, these techniques may quickly get harder to read
once the number of compared datasets increases.

One of these visualization techniques is notched boxplots as
described by McGill et al. [15]. Boxplots represent data. They do
not represent statistical test results. However, if the notches of two
boxes representing different datasets do not overlap, this is an
indicator that their medians may be significantly different at a 5%
error level. See Wickham and Stryjewski [24] for more discussion
on variants of boxplots.

1 The first author noted that he did not take such measures in his previous
work due to ignorance of the issue.
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