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a b s t r a c t

In this paper, stability and Hopf bifurcation of reaction–diffusion neural networks with delays is
considered, where the sum of the delays can be regarded as a bifurcation parameter. Some sufficient
conditions are provided for checking stability and Hopf bifurcation. The particular attention is focused on
the change of the stability as the bifurcation parameter τ increased. The computer simulations are
provided to verify the efficiency of the theoretical results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decades, Hopfield neural networks [1,2] and their
various generalizations [3–5] had attracted the attention of many
researchers due to their potential applications in areas such as
solving image processing, pattern recognition, associative memory,
and optimization [6–9]. Since an exhaustive analysis of the
dynamics of large systems is difficult, the smaller systems display
similar behavior. Recently, Ruiz et al. [10] studied in detail the
specific 3-node recurrent network described as

dx1
dt

¼ �x1ðtÞþtanh½x2ðtÞ�
dx2
dt

¼ �x2ðtÞþtanh½x3ðtÞ�
dx3
dt

¼ �x3ðtÞþw1tanh½x1ðtÞ�þw2tanh½x2ðtÞ�;

8>>>>>>><
>>>>>>>:
they had shown that the network model could possess an attrac-
tive limit cycle.

It is well known that there exits time delays in the information
processing of neurons since the transmission of information from
one neuron to another is not instantaneous. Time delays have
important influences on the dynamical behavior of neural networks,
they may destabilize the stable equilibria and admit periodic oscilla-
tion, bifurcation and chaos [11,12]. So in models of artificial neural
networks, it is necessary to incorporate the processing time of each

neuron to make them more realistic. Several papers were devoted to
the stability and bifurcation of neural network models with delays
[5,7,9,13]. Zou and his partners [14] studied the bifurcation of a
three-unit neural network with delays

dx1
dt

¼ �kx1ðtÞþa tanh½x2ðt�τ2Þ�þa tanh½x3ðt�τ1Þ�
dx2
dt

¼ �kx2ðtÞþa tanh½x3ðt�τ2Þ�þa tanh½x1ðt�τ1Þ�
dx3
dt

¼ �kx3ðtÞþa tanh½x1ðt�τ2Þ�þa tanh½x2ðt�τ1Þ�;

8>>>>>>><
>>>>>>>:
the authors gave the largest stability region of the trivial solution and
the existence of codimension of one or two bifurcations of the
system. Babcock and Westervelt [15] also suggested examining
carefully the dynamical behavior of some simple networks. One of
the simple networks they studied was the following two-neuron
network model with two delays

du1

dt
¼ �u1ðtÞþa1 tanh½u2ðt�τ2Þ�

du2

dt
¼ �u2ðtÞþa2 tanh½u1ðt�τ1Þ�;

8>><
>>: ð1Þ

where τ1 and τ2 were delays, tanh(u) denoted the signal transmission
function. Babcock and Westervelt showed that system (1) exhibited
very interesting and rich dynamics including stable and unstable
limit cycles, etc. Gopalsamy and Leung [16] also considered system
(1) with τ1 ¼ τ2, the authors showed that under certain conditions,
the delay induced a Hopf-type bifurcation.
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The diffusion effects cannot be ignored in neural networks when
electrons are moving in a nonuniform electromagnetic field. As
pointed out the authors in [17–19], the whole structure and dynamic
behaviors of multi-layer cellular neural networks are seriously
dependent on the evolution time of each variable and its position
(space), but also intensively dependent on its interactions deriving
from the space-distributed structure of the whole networks. There-
fore, the reaction–diffusion effects should be seriously considered.
Recently, Liao et al. [20] discussed the stability of reaction–diffusion
Hopfield neural networks without time delays. Wang and Xu [21,22]
studied the global attractor of reaction–diffusion Hopfield neural
networks with constant time delay and global exponential stability of
reaction–diffusion Hopfield neural networks with time-varying
delays, respectively. However, in all these works, the effect of
diffusion on the stability or instability has not been considered.
Moreover, only a few of works have discussed the bifurcation of two
neurons model with diffusion terms and delays [23,24].

In designing a neural circuit, it is often desired that the neural
network has a stable equilibrium point. As is well known, a neural
network has complicated internal dynamics. It is therefore difficult to
predict their behavior. For some special networks, when the para-
meters of the network have a particular symmetric structure and are
chosen so that the overall dynamics of the network are asymptotically
stable. However, if the parameters do not have a symmetric structure,
then the analysis of the network dynamics becomes intractable
[15,16]. It is therefore natural to ask how guarantee that the stability
of equilibrium point? For asymmetric networks and symmetric net-
works, one of the purposes of the present paper is to give some
parameter conditions which guarantee that the equilibrium point of
the two-neuron reaction–diffusion model is asymptotically stable.

It is well known that studies on neural dynamical systems involve
not only a discussion of stability properties, but also many dynamical
behaviors such as periodicity and chaos. For example, in biological
neural networks, the existence of periodic solutions causes some
problems in neural network applications such as content addressable
memory, periodic sequences of neural impulses are of fundamental
importance for the control of motor body functions, such as heartbeat,
which occurs with great regularity almost three billion times during
an average person's life [15,16]. In artificial neural networks, the
research of the periodicity may help to handle noises in hardware
implementations [15,16]. Thus, seeking the conditions of periodicity is
of both theoretical and practical importance for neural networks. The
Hopf theory is one of the most important methods for studying
periodic solutions in autonomous nonlinear neural systems. Therefore,
another purpose of the present paper is to give some parameter
conditions for which the two-neuron model with reaction–diffusion
terms has a periodic solution based on ideas from bifurcation analysis.
By such analytical forms, one may understand the given parameter
conditions in the present paper mainly reflect the stability or
periodicity of neural networks.

2. Neural networks' model for coupling connection terms with
delays

Consider the following reaction–diffusion neural network
model with delays

∂uðt; xÞ
∂t

¼ d1Δuðt; xÞ�c1uðt; xÞþa1g½vðt�τ1; xÞ�
þb1g½uðt; xÞ�; t40; xAΩ

∂vðt; xÞ
∂t

¼ d2Δvðt; xÞ�c2vðt; xÞþa2g½uðt�τ2; xÞ�
þb2g½vðt; xÞ�; t40; xAΩ

∂uðt; xÞ
∂n

¼ ∂vðt; xÞ
∂n

¼ 0; t40; xA∂Ω

uðt; xÞ ¼Φðt; xÞ; vðt; xÞ ¼ Ψ ðt; xÞ; tA ½�τ;0� �Ω;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð2Þ

where uðt; xÞ and vðt; xÞ denote the activation state of the neuron;
Ω is the one-dimensional spatial domain with Ω¼ ð0; πÞ, and ∂=∂n
denotes the outward normal derivative; Δ : ∂2=∂x2 denotes the
Laplacian operator; di40ði¼ 1;2Þ are the diffusion coefficients;
τiði¼ 1;2Þ is the delay; ci40ði¼ 1;2Þ denotes the self-feedback
rate of the network; aiði¼ 1;2Þ and biði¼ 1;2Þ denote the connec-
tion and self-feedback strength, respectively. gð�Þ is the activation
function of neurons. gð�Þ is the C1-smooth function with gð0Þ ¼ 0.
Φ;ΨAC9Cð½�τ;0�;XÞ and X is defined by

X ¼ u; vAW2;2ðΩÞ; ∂u
∂n

¼ ∂v
∂n

¼ 0; xA∂Ω
� �

with 〈�; �〉 being the inner product. It is easy to see that system (2)
always has a zero equilibrium point ð0;0ÞT . In the following, we
analyze the stability and the bifurcation of the system (2) at ð0;0ÞT .

3. Asymptotical stability and Hopf bifurcation analysis for
system (2)

Denote UðtÞ ¼ ðuðtÞ; vðtÞÞT ¼ ðuðt; �Þ; vðt; �ÞÞT . Then system (2) can
be rewritten as an abstract ordinary differential equation (ODE) in
the Banach space C

_U ðtÞ ¼DΔUðtÞþLðUtÞþ f ðUtÞ; ð3Þ

where D¼ diagfd1; d2g, L : C-R2 and f : C � Rþ-R2.
The linear equation of system (2) at ð0;0ÞT is

_U ðtÞ ¼DΔUðtÞþLðUtÞ; ð4Þ
whose characteristic equation is

λy�DΔy�Lðeλ�yÞ ¼ 0; yAdomðΔÞ: ð5Þ
Obviously, the stability of zero equilibrium point of (2) depends

on the locations of roots of characteristic equation (5). The zero
equilibrium point of (2) is asymptotically stable if all roots of (5)
have negative real parts. The zero equilibrium point of (2) is
unstable if (5) has at least one root with a positive real part.

It is known that the eigenvalues of Δ on X are
�k2ðkAN09f0;1;2;…gÞ and the corresponding eigenfunctions
are β1k ¼ ðγk;0ÞT , β2k ¼ ð0; γkÞT , γk ¼ cos ðkxÞ, and fβ1k ; β2kg

1
k ¼ 0 con-

struct a basis of the phase space X, therefore, any element y in X
can be expanded as a Fourier series in the following form:

y¼ ∑
1

k ¼ 0
YT
k

β1k
β2k

 !
; Yk ¼

〈y; β1k 〉

〈y; β2k 〉

 !
: ð6Þ

In addition, some easy computations can show that

LðφT ðβ1k ; β2k ÞT Þ ¼ LðφÞT ðβ1k ; β2k ÞT ; kAN0; ð7Þ
for φ¼ ðφ1;φ1ÞT ACð½�τ;0�;R2Þ.

For convenience, set c11 ¼ a1g0ð0Þ, c12 ¼ b1g0ð0Þ, c21 ¼ a2g0ð0Þ,
c22 ¼ b2g0ð0Þ. From (6) and (7), (5) is equivalent to

∑
1

k ¼ 0
YT
k ðλI2þDk2Þ� �c1þc12 c21e� λτ2

c11e� λτ1 �c2þc22

 !" #
β1k
β2k

 !
¼ 0; ð8Þ

where I2 ¼ diagf1;1;…;1g.
Hence, (5) can be transformed into the following characteristic

equation:

λ2þðd1k2þc1�c12þd2k
2þc2�c22Þλ

þðd1k2þc1�c12Þðd2k2þc2�c22Þ�c11c21e� λðτ1 þ τ2Þ ¼ 0: ð9Þ
For simplicity, let τ¼ τ1þτ2, p1ðk2Þ ¼ ðd1þd2Þk2þc1� c12þc2�

c22, q1ðk2Þ ¼ ðd1k2þc1�c12Þðd2k2þc2�c22Þ. Then the characteristic
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