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a b s t r a c t

In this research, for online modeling and prediction of multivariate time series, we propose a novel
approach termed squared root cubature Kalman filter-γ echo state network (SCKF-γESN). First, multi-
variate time series are modeled by using γ echo state network (γESN). Then, by using squared root
cubature Kalman filter (SCKF), we update parameters of γESN and predict future observations online.
Furthermore, we add a robust outlier detection algorithm to SCKF to protect SCKF-γESN from divergence
caused by outliers. Finally, two numerical examples, by using a multivariate benchmark dataset and a
real-world dataset, are conducted to substantiate the effectiveness and characteristics of the proposed
SCKF-γESN.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recently, there have been many techniques developed in the
field of nonlinear multivariate time series prediction. For example,
autoregressive regression model [1], wavelet transform [2],
support vector machine [3], fuzzy theory [4], self-organizing
approaches [5], and neural networks [6]. Among these methods,
neural networks have been adopted increasingly for nonlinear time
series prediction [7]. The salient feature of neural networks is their
appealing ability to learn input–output mappings from data with no
necessary for prior knowledge. There are two major types: feed
forward neural networks (FNNs) and recurrent neural networks
(RNNs). Compared with FNNs, RNNs have the lateral connections or
cyclic connections, which have been proven to be computationally
effective for time series prediction [8]. Additionally, RNNs can
provide a fairly accurate universal approximation to an arbitrary
linear function [9]. Therefore they are widely used to predict the
future values dependent on the past values [10]. Because RNN
training algorithms are on the basis of direct optimization of the
network weights, they usually exhibit slow convergence speed
associated with high computational requirements, and often yield
local optima of the optimized objective functions [11].

As a significant development in RNNs, echo state networks
(ESNs) facilitate the application of RNNs and outperform the
conventional fully trained RNNs [12–14]. Conventional ESNs con-
sist of a nontrainable sparse recurrent part, i.e., reservoir, and a
linear readout part. Input weights and connection weights inside

the reservoir are generated randomly. Only the synaptic connec-
tions from the recurrent reservoir to output readout neurons are
adaptable via supervised learning [15]. Similar to ESNs, extreme
learning machines (ELMs) have the property that hidden nodes
are generated randomly, and only output weights are calculated
analytically [16,17]. But ELMs are single-hidden-layer feed forward
networks. They do not exhibit dynamic features. While the reser-
voir in ESNs can maintain active even in the absence of inputs,
which exhibits the ability of dynamic memory. Like RNNs, ESNs
can learn to mimic a target system with arbitrary accuracy [12].
Thanks to the merits stated above, ESNs have been successfully
applied in time series prediction, positioning, reinforcement
learning, inverse modeling, nonlinear control and so on [12,18,19].

In recent years, researchers have found that neurons in con-
ventional ESNs are usually set as hyperbolic tangent function [14],
whose jump and slope play a key role in nonlinear approximation
[20]. In [21], the authors proposed an input scaling parameter γ to
control the activation potential of hyperbolic tangent function.
Similarly, in this paper, we also take the input scaling parameter γ
into consideration. Both the input scaling parameter γ and the
output weights are trained in γESN. With respect to γ, training
γESN becomes a nonlinear problem.

There are two major types of training γESN [22]. One is off-line
method, in which adjustments to unknown parameters are per-
formed after the presentation of all the samples in the training set.
It is rather demanding in terms of storage requirements. The other
one is on-line method, in which adjustments to unknown para-
meters are performed one-by-one. The data which have already
been used in the training process can be discarded, so this method
can save memory space and ease computational load [16]. Kalman
filter (KF) can produce the optimal solution to estimating the
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unknown state in a linear dynamic system [23]. However real-
world systems are plagued by nonlinearities generally. In this case,
it is hard to get a closed-form solution to the state estimation, so
we have to make some approximations. The widely known non-
linear filter is extended Kalman filter (EKF), which has been used
in many practical applications for decades [24]. But EKF could
work well only in a mild nonlinear environment owing to the first
order Taylor series approximation for nonlinear functions. After-
wards, deriving a more accurate nonlinear filter that could be
applied for a wide range of nonlinear functions has been the main
subject of intensive research in the field of Kalman filters. The
conventional approaches to solving the problems are unscented
Kalman filter (UKF) [25] and cubature Kalman filter (CKF) [26,27].
They share a common property of using a weighted set of
symmetric points, which are called sigma-points in UKF and
cubature-points in CKF respectively. However, they have the opera-
tion of square-rooting, which is making them numerically sensitive
and easy to be ill-conditioned. The square-root version of the CKF,
termed SCKF, can avoid matrix square-rooting operations and
improve the numerical accuracy. We may also seek square root
solution to UKF. Unfortunately it is unavailable to get a square-root
solution that enjoys the numerical advantage similar to SCKF [26].

In online time series prediction, another main problem is high
noise levels, or the influences of outliers. Outliers are much
different from the rest of the data based on some measure. Learning
observations containing outliers without awareness may lead to
fitting those unwanted data and may corrupt the approximation
function. Therefore, detecting and removing the outliers are very
important. Many algorithms have been proposed in recent years for
outlier detection [28,29]. Specially, in [30], the authors proposed an
approach to evaluate residual with causality constraint, which
operated at a fast speed for prompt fault detection.

In this paper, an online echo state network based on square
root cubature Kalman filters, referred to SCKF-γESN, is proposed to
deal with the multivariate time series prediction. It can learn the
training data one-by-one or chunk-by-chunk. We also combine
outlier detection algorithm with SCKF-γESN, to improve the
forecasting accuracy and robustness.

The rest of the paper is organized as follows. In Section 2,
we give an introduction of γESN. In Section 3, we concisely
introduce the proposed SCKF-γESN model. Afterwards, we analyze
the merits of the proposed model. In Section 4, simulations are
conducted. Furthermore, the performance of the SCKF-γESN
model is compared with other models. Finally, in Section 5,
discussions and conclusions are given.

2. γESN

In this section, we will describe the essence of γESN from
the perspective of input scaling parameter γ beyond conven-
tional ESNs.

Conventional ESNs are novel recurrent discrete-time neural
networks. Fig. 1 shows the architecture of conventional ESNs.
It consists of a feed-forward input layer with L units, a recurrently
connected hidden layer with M units, and a feed-forward output
layer with D units [12]. Without loss of generality, we shall address
output layer with one readout neuron i.e. D is equal to 1. The
center of ESNs is the recurrently interconnected hidden layer,
usually called reservoir, because the echo state property (ESP, i.e.,
remembering a number of previous inputs and asymptotically
washing out the initial information) is ensured by a sparse
interconnectivity of 1%–5% within the reservoir [12,31].

Denote uðkÞ ¼ ½ukð1Þ;ukð2Þ;⋯;ukðLÞ�TAℝL�1, and zkAℝ as
the activation of the input and output units at time step k,
respectively. The echo state xkAℝM�1 of the reservoir at time

step k is generated from the temporal input uk and the prior echo
states xk�1, and it is defined as follows:

xk ¼ f ðWinukþWxxk�1Þ ð1Þ
where f ðU Þ denotes the reservoir activation function. In this paper,
we consider reservoirs comprising analog neurons, with tan hðUÞ
transfer function [15], and set the initial state of the reservoir as
zero, i.e., x0¼0.

The linear output zk is computed as

zk ¼Woutxkþωk ð2Þ
The input-to-reservoir weights matrix WinAℝM�L and the

interconnection of reservoir weights matrix WxAℝM�M are time-
invariant and known. Only the reservoir-to-output weights matrix
WoutAℝ1�M is modified via supervised learning. The spectral
radius of Wx, denoted by ρðWxÞ, is less than 1. It ensures that the
network converges to a stable equilibrium point without oscilla-
tion. fωkg is an independent Gaussian noise sequence.

In classical MLP models, there are local scaling parameters for
input weights [32]. Similarly, in ESNs, add input scaling parameter
γ into Eqs. (1) and (2), yielding

zk ¼Wout f ðγWinukþWxxk�1Þþωk ð3Þ
If the input scaling parameter γ is close to zero, γWinukþWxxk

will lie in a small interval. ESNs works in the linear region as
shown in Fig. 2, i.e., it is suitable for an approximate linear
regression task or weak nonlinear regression task. On the other
hand, if γ is large, the ESN indicates strong nonlinearity and fits
well for a nonlinear task [20]. Accordingly, input scaling parameter
γ has a significant effect on the performance of ESNs. Eq. (3) is the

Fig. 1. Conventional ESNs structure. Solid arrows indicate fixed connections and
dashed arrows trainable connections.
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Fig. 2. Hyperbolic tangent sigmoid function.
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