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a b s t r a c t

This study is concerned with the issue of delay-dependent stability criteria for continuous-time systems
with time-varying delays. By introducing an appropriate Lyapunov–Krasovskii functional and the
improved reciprocally convex technique, a new less conservative and simplified stability criterion is
obtained in terms of linear matrix inequalities (LMIs). At last, numerical examples are also designated to
demonstrate the effectiveness and reduced conservatism of the developed results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that time delay is always encountered in the
practical systems and usually results in instability and poor perfor-
mance of dynamical systems, it is very significant to examine the
dynamical systems with time delay. It should be noted that in many
practical systems, time delay is always varying and has been
successful applied to various areas such as networked control
systems, biological systems and chemical processes systems. Up to
now, various research issues on dynamical systems with time-
varying delay have been studied [1–5]. Major of the existing results
are classified into the following two cases: delay-independent
criteria [6] and delay-dependent criteria [7–15]. Compared with
delay-independent stability criteria, the delay-dependent ones always
receive less conservative. Therefore, major attentions have been
concentrated with the derivation of delay-dependent ones.

With the development of microelectronic technology, neural
networks have drawn a lot of attention due to their extensive
applications in various fields, for instance, pattern recognition,
combinatorial optimization and signal processing. In recent years,
there exists the finite speed in the processing of information, the
neural networks with time-varying delays have been extensively
improved in terms of LMIs via different analysis techniques [8–34].
In [8], the stability criterion for neural networks was introduced by
using the technique of free-weighting matrix. In [9], the stability

result was reported by employing the method of convex combination.
The reciprocally convex technique was proposed in [10]. The improved
bounding method was discussed in [11]. Recently, several seeks also
have been devoted by choosing an augmented Lyapunov–Krasokii
functional in [12,13] and formula of Newton–Leibniz was also intro-
duced in [14]. As a forceful tool to get the efficient condition, Jensen's
inequality has also been considered to overcome the conservativeness
in [16]. In [17], using the Lyapunov functionals of delay partition,
improved conditions are given. Therefore, it is very important to
choose an appropriate technique with Lyapunov–Krasovskii functional
and obtain an upper bound of time delay.

In this paper, the delay-dependent stability criteria for continuous-
time systems with time-varying delays are revisited. The integral
inequalities are employed to ensure the positiveness of the Lyapunov–
Krasovskii functional and using the formula of Newton–Leibniz, less
conservative stability result is obtained. At last, numerical examples
are also given to demonstrate the reduced conservatism and the
effectiveness of the proposed method.

2. Preliminaries

Consider a class of neural network with continuous-time neural
networks with time-varying delays as follows:

_xðtÞ ¼ AxðtÞþBxðt�τðtÞÞþ J

xðtÞ ¼ ϕðtÞ; tA ½�τM ;0Þ;

(
ð1Þ

where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ;…; xnðtÞ�> denotes the neural state vector
of the continuous-time neural network, ϕðtÞ is the initial condition
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and continuously differentiable; J ¼ ½J1; J2;…; Jn�> represents a con-
stant external input vector. A and B are the known real constant
matrices. τðtÞ is the time-varying function and satisfies

τ0rτðtÞrτM ; ð2Þ

0r _τðtÞrτ; ð3Þ
where τ and 0oτ0rτM are the constant scalars. It should be noted
that two cases will be considered in this paper. Firstly, the time-
varying delay τðtÞ is not differentiable. Secondly, the time-varying
delay τðtÞ is differentiable and has upper bound τ.

It follows from Brouwer's fixed-point theorem, for the neural
networks, there exists an equilibrium point. In general, assuming
xn ¼ ½xn1; xn2;…; xnn�> is the equilibrium point of the system (1). With
the coordinate change ηð�Þ ¼ xð�Þ�xn, the system (1) is transformed
as follows:

_ηðtÞ ¼ AηðtÞþBηðt�τðtÞÞ ð4Þ
where ηðtÞ ¼ ½η1ðtÞ; η2ðtÞ;…; ηnðtÞ�> denotes the state vector of the
system (1).

In order to simplicity of matrix representation in this paper, χi,
i¼10, are limited as the block entry matrices. For example,
χ>
2 ¼ ½0 I 0 0 0 0 0 0 0 0 0 0�> . The other representations are
defined as follows:

ξ> ðtÞ ¼
�
η> ðtÞ; η> ðt�τðtÞÞ; η> ðt�ατðtÞÞ; η> ðt�τ0Þ; η> ðt�τMÞ;Z t

t� τ0

ηðsÞ ds;
Z t� τ0

t� τðtÞ
ηðsÞ ds;

Z t� τðtÞ

t� τM

ηðsÞ ds;
Z t

t�ατðtÞ
ηðsÞ ds;

Z t�ατðtÞ

t� τðtÞ
ηðsÞ ds

�
;

ς> ðtÞ ¼ η> ðtÞ
Z t

t� τ0

ηðsÞ ds
Z t� τ0

t� τðtÞ
η> ðsÞ ds

Z t� τðtÞ

t� τM

η> ðsÞ ds
�

�
Z t

t�ατðtÞ
η> ðsÞ ds

Z t�ατðtÞ

t� τðtÞ
η> ðsÞ ds

�
:

Lemma 2.1. For any constant matrix M¼M> 40 and scalars
τM4τ0Z0 such that the following integrations are well defined, thenZ t� τ0

t� τM

η> ðsÞMηðsÞ dsZ 1
τM�τ0

Z t� τ0

t� τM

ηðsÞ ds
� �>

M
Z t� τ0

t� τM

ηðsÞ ds
� �

;

Z � τ0

� τM

Z t

tþθ
η> ðsÞMηðsÞ ds dθZ 2

τ2M�τ20

Z � τ0

� τM

Z t

tþ θ
ηðsÞ ds dθ

� �>

�M
Z � τ0

� τM

Z t

tþθ
ηðsÞ ds dθ

� �
:

3. Main results

In this section, one method would be introduced to analyze the
asymptotically stable of for continuous-time systems with time-
varying delays.

Theorem 3.1. Given the constant scalars τM4τ0Z0, 14α40 and
k40, the neural networks (1) are asymptotically stable if there exist
mode-dependent symmetric matrices P, Q i40, i¼ 1;2;3, Zj40,
j¼ 1;2;3, any appropriately dimensioned matrices Ml, l¼ 1;2;3,
such that the following matrix inequalities hold:

Ω1 ¼ ΓPΓ> þe�2kτ0 1
τ0
χ6Q1χ

>
6 þe�2kτM 1

τM
ðχ8þχ10þχ9ÞQ2ðχ8þχ10þχ9Þ>

þe�2kατMe9Q3e
>
9 þe�2kτ0 2

τ20
ðτ0χ1�χ6ÞW1ðτ0χ1�χ6Þ>

þe�2kτM 2
τ2M�τ20

ððτM�τ0Þe1�e8�e7ÞW2ððτM�τ0Þe1�e8�e7Þ>

þe�2kτM 2
τ2M

ðτMe1�e8�e10�e9ÞW3ðτMe1�e8�e10�e9Þ> 40; ð5Þ

Ω2 e�kτMM1 e�kτMM2 e�kτMM3

n � 1
ατ0

W3 0 0

n n � 1
ð1�αÞτ0W3 0

n n n � 1
τM � τ0

W3

2
666664

3
777775o0; ð6Þ

Ω2 e�kτMM1

n � 1
ατM

W3 0

n n � 1
ð1�αÞτMW3

2
664

3
775o0; ð7Þ

where

Γ ¼ ½χ1; χ6; χ7; χ8; χ9; χ10�;
Δ¼ ½χ1A> þχ2B

> ; χ1�χ4; χ4�ð1�τÞχ2; ð1�τÞχ2�χ5;

χ1�ð1�ατÞχ3; ð1�ατÞχ3�ð1�τÞχ2�;

Ω2 ¼ ΓPΔ> þΔPΓ> þ2Γ>PΓþχ1ðQ1þQ2þQ3Þχ>
1

�e�2kτ0χ4Q1χ
>
4 �e�2kτMχ5Q2χ

>
5 �ð1�ατÞe�2αkτ0χ3Q3χ

>
3

þðχ1A> þχ2B
> Þðτ0W1þðτM�τ0ÞW2þτMW3Þðχ1A> þχ2B

> Þ>

�e�2kτ0 1
τ0
χ1W1χ

>
1 þe�2kτ0 1

τ0
χ4W1χ

>
4

�e�2kτM 1
τM�τ0

χ2�χ5
χ4�χ2

" #
W2 R

n W2

" #
χ2�χ5
χ4�χ2

" #>8<
:

9=
;

þðe1A> þe2B
> Þ τ20

2
Z1þ

τ2M�τ20
2

Z2þ
τ2M
2
Z3

� �
ðe1A> þe2B

> Þ>

�e�2kτ0 2
τ20
ðτ0χ1�χ6ÞZ1ðτ0χ1�χ6Þ>

�e�2kτM 2
τ2M�τ20

ððτM�τ0Þχ1�χ8�χ7ÞZ2ððτM�τ0Þχ1�χ8�χ7Þ>

�e�2kτM 2
τ2M

ðτMχ1�χ8�χ10�χ9ÞZ3ðτMχ1�χ8�χ10�χ9Þ>

þ2e�2kτMM1ðχ>
1 �χ>

3 Þþ2e�2kτMM2ðχ>
3 �χ>

2 Þ
þ2e�2kτMM3ðχ>

2 �χ>
5 Þ

Proof. In this paper, we construct the Lyapunov functional with
the following form:

VðηðtÞÞ ¼ V1ðηðtÞÞþV2ðηðtÞÞþV3ðηðtÞÞþV4ðηðtÞÞ; ð8Þ

V1ðηðtÞÞ ¼ e2ktς> ðtÞPςðtÞ;

V2ðηðtÞÞ ¼
Z t

t� τ0

e2kθη> ðθÞQ1ηðθÞ dθþ
Z t

t� τM

e2kθη> ðθÞQ2ηðθÞ dθ

þ
Z t

t�ατðtÞ
e2kθη> ðθÞQ3ηðθÞ dθ;

V3ðηðtÞÞ ¼
Z 0

� τ0

Z t

tþ s
e2kθ _η> ðθÞW1 _ηðθÞ dθ ds

þ
Z � τ0

� τM

Z t

tþ s
e2kθ _η> ðθÞW2 _ηðθÞ dθ ds

þ
Z 0

� τM

Z t

tþ s
e2kθ _η> ðθÞW3 _ηðθÞ dθ ds;

V4ðηðtÞÞ ¼
Z 0

� τ0

Z 0

s

Z t

tþ λ
e2kθ _η> ðθÞZ1 _ηðθÞ dθ dλ ds

þ
Z � τ0

� τM

Z 0

s

Z t

tþ λ
e2kθ _η> ðθÞZ2 _ηðθÞ dθ dλ ds
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