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a b s t r a c t

In this paper, synchronization of memristor-based neural networks (MNNs) with time-varying delays is
investigated. By employing the Newton–Leibniz formulation and inequality technique, the controller
with state or output coupling is designed to obtain global exponential synchronization of MNNs. The
obtained delay-dependent conditions can be checked easily and they also enrich and improve the results
in earlier publications. Finally, one numerical example is given to demonstrate the effectiveness of the
obtained results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The practical memristor device was realized by scientists at
Hewlett–Packard Laboratories and the finding was published in
2008 [1] since memristor was originally theorized by Chua in 1971
[2]. Memristor was predicted as the fourth circuit element (the
other three are resistor, capacitor and inductor) and it could play
the role as resistor in circuit system. In the past few years,
memristor has received increasing research attention for its
potential applications in the next generation computer and power-
ful brainlike neural computers [3]. In addition, it has been shown
that memristors are proposed to work as synaptic weights in
artificial neural networks [4,18]. Due to this feature, the model of
memristor-based neural networks (MNNs) can be built to emulate
the human brainwhere synapses are implemented with memristors.

As is well known, synchronization of neural networks is sig-
nificant and it has received great attention due to their potential
applications in many different areas such as secure communication
[19-23], information science [24-27, 29-31], and biological system
[32-35]. In addition, synchronization control has been used to
investigate the dynamic properties of neural networks. Moreover,
the results in [17] show that memristor-based nonlinear hybrid
system plays an important role in the security of secure

communication due to the special feature of memristor. Therefore,
it is significant to study synchronization of MNNs.

Motivated by the above discussion, in this paper, we focus our
attention on the design of the controller for the synchronization of
MNNs. The contributions of this paper are as follows. Firstly, by
using the nonsmooth analysis of control theory, the synchroniza-
tion of MNNs with discontinuous right-hand side is investigated.
Different from continuous neural networks, the system of MNNs is
discontinuous since the parameters concerning memristors
change according to its state. The classical solution is not applic-
able, so the existence of solutions for MNNs is a delicate problem.
Also, this problem brings challenges to investigate the synchroni-
zation of MNNs. Secondly, a general controller with state or output
coupling is proposed. In [9,12], the synchronization of MNNs was
obtained with memoryless controller. But the controller consid-
ered in our paper contains the information of the size of τðtÞ.
Thirdly, the coupling matrix in [12,13] is required to be symme-
trical while the coupling matrices in our paper are random and can
be easily solved by using the MATLAB tool boxes. Finally, by using a
new lemma and the transform scaling, our results are true for
MNNs which in terms of differential inclusion.

The organization of this paper is as follows. The system and
some preliminaries are introduced in Section 2. In Section 3, a
delay-dependent controller is designed to obtain the sufficient
conditions for the synchronization of MNNs. Then, numerical
simulations are given to demonstrate the effectiveness of the
obtained results in Section 4. Finally, conclusions are drawn in
Section 5.
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2. System description and preliminaries

In this paper, we consider the memristor-based neural net-
works as follows:
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xi(t) is the state variable of the i-th neuron. ðaijðxjðtÞÞÞ and
ðbijðxjðt�τijðtÞÞÞÞ denote the feedback connection weight and
delayed feedback connection weight, respectively. gj : R-R is
bounded continuous function, τijðtÞ corresponds to the transmis-
sion delay, i; j¼ 1;2;…;n. an

ij; a
nn

ij ; b
n

ij; b
nn

ij ; i; j¼ 1;2;…;n are all con-
stant numbers. The initial condition of system (1) is xðsÞ ¼
ϕðsÞ ¼ ðϕ1ðsÞ;ϕ2ðsÞ;…;ϕnðsÞÞT ACð½�τ;0�;RnÞ.

Obviously, system (1) is a discontinuous system, then its
solution is different from the classic solution and cannot be
defined in the conventional sense. In order to obtain the solution
of system (1), some definitions and lemmas are given.

Definition 1. For a system with discontinuous right-hand side:

dx
dt

¼ FðxÞ; xð0Þ ¼ x0; xARn; tZ0; ð2Þ

where FðxÞ : Rn⟶Rn is discontinuous. A set-valued map is defined
as

ΦðxÞ ¼ ⋂
δ40

⋂
μðNÞ ¼ 0

co½FðBðx; δÞ\N�;

where co½E� is the closure of the convex hull of set E, E� Rn,
Bðx; δÞ ¼ fy : Jy�xJoδ; x; yARn; δARþ g, and N� Rn, μðNÞ is Lebes-
gue measure of set N.

A solution in Filippov's sense [5] of system (2) with the initial
condition xð0Þ ¼ x0ARn is an absolutely continuous function
xðtÞ; tA ½0; T �; T40, which satisfy xð0Þ ¼ x0 and differential inclu-
sion:

dx
dt

AΦðxÞ for a:a: tA ½0; T �:

If F(x) is bounded, then the set-valued function ΦðxÞ is none-
mpty, bounded and closed, convex, and it is upper semicontinuous
[5], then the solution x(t) of system (2) with the initial condition
exists and it can be extended to the interval ½0; þ1Þ in the sense of
Filippov.

By applying the theories of set-valued maps and differential
inclusions [5–7], then system (1) can be rewritten as the following
differential inclusion:
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Throughout this paper, we consider system (3) as the drive
system. Then the corresponding response system is as follows:

_yiðtÞA�yiðtÞþ ∑
n

j ¼ 1
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for a:a: tZ0; i¼ 1;2;…;n; ð4Þ
where yi(t) is the state variable of the i-th neuron, i¼ 1;2;…;n,
ui(t) is the appropriate control input to obtain a certain control
objective, other parameters are the same as in systems (3). The
initial condition of (4) is yðsÞ ¼ φðsÞ ¼ ðφ1ðsÞ;φ2ðsÞ;…;φnðsÞÞT A
Cð½�τ;0�;RnÞ.

Definition 2. A function xðtÞ ¼ ðx1ðtÞ; x2ðtÞ;…; xnðtÞÞT is a solution of
(1), with the initial condition xðsÞ ¼ ϕðsÞ ¼ ðϕ1ðsÞ;ϕ2ðsÞ;…;

ϕnðsÞÞT ACð½�τ;0�;RnÞ, if x(t) is an absolutely continuous function
and satisfies the differential inclusion (3).

Throughout this paper, the following assumptions are given for
system (1).

(H1) For jA1;2;…;n; gj is bounded and there exists constant
lj40 such that

0r
gjðs1Þ�gjðs2Þ

s1�s2
r lj; gjð0Þ ¼ 0;

for all s1; s2AR; s1as2.
(H2) The transmission delay τijðtÞ is a differential function and

there exist τ; μ40 such that

0rτijðtÞrτ; _τ ijðtÞrμ;

for all tZ0; i; j¼ 1;2;…;n.

Lemma 1. Suppose that the assumption (H 1) holds, then solution x
(t) with the initial condition ϕðsÞ ¼ ðϕ1ðsÞ;ϕ2ðsÞ;…;ϕnðsÞÞT A
Cð½�τ;0�;RnÞ of (1) exists and it can be extended to the interval
½0; þ1Þ in the sense of Filippov.

Define the synchronization error as ϵðtÞ ¼ ðϵ1ðtÞ; ϵ2ðtÞ;…; ϵnðtÞÞT
where ϵiðtÞ ¼ yiðtÞ�xiðtÞ for all i¼ 1;2;…;n. Then based on theories
of set-valued maps and differential inclusions, we can obtain the
following error system:

_ϵiðtÞA�ϵiðtÞþ ∑
n

j ¼ 1
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�co½bijðxjðt�τijðtÞÞÞ�gjðxjðt�τijðtÞÞÞÞgþuiðtÞ;
for a:a: tZ0; i¼ 1;2;…;n: ð5Þ

The aim of this paper is to design a controller u(t) to let the
response system (4) synchronize with the drive system (3). Since the
information on the size of τðtÞ is available, the controller in the
following form is considered:

uðtÞ ¼ K1ϵðtÞþK2ϵðt�τðtÞÞ ð6Þ
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