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a b s t r a c t

Aiming at the features that modem industrial processes always have some characteristics of complexity
and nonlinearity and the process data usually contain both Gaussion and non-Gaussion information at
the same time, a new process performance monitoring and fault detection method based on wavelet
transform and kernel entropy component analysis (WT-KECA) is proposed in this paper. Unlike other
kernel feature extraction methods, this method chooses the best principal component vectors according
to the maximal Renyi entropy rather than judging by the top eigenvalues and eigenvectors of the kernel
matrix simply. Besides, it can denoise and anti-disturb due to the application of wavelet transform. The
proposed method is applied to process monitoring in the Tennessee Eastman (TE) process and the fault
identification is realized. The simulation results indicate that the proposed method is more feasible and
efficient in comparing to KPCA method.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The monitoring of industrial processes and the detection of
faults in those processes are especially significant procedures as
the industrial process control system tends to be large-scale and
complicated. The actual production data, however, inevitably has
properties of noises, random disturbances. There exist some data
transformation methods to tackle these problems. Among them,
Principal Component Analysis (PCA) is a powerful technique for
extracting structure from possibly high-dimensional data sets and
widely utilized for process monitoring and fault diagnosis on
account of its ability to handle high-dimensional, noisy, and highly
correlated data. MacGregor and Kourti [1] established a PCA model
from the training data and detected the abnormal behavior of
online processes. However, PCA is a linear transformation method
whose performance would degrade the monitoring performance
greatly for some complicated cases in chemical industry process
with particularly nonlinear characteristics [2].

To solve the problem posed by nonlinear data, Scholkopf
proposed kernel principal component analysis (KPCA) method
[3]. The main idea of KPCA is to map the input space into a feature
space via nonlinear mapping and then perform PCA in a higher
dimensional feature space. It has proven to be a very effective fault
diagnostic method in process monitoring because of the main
advantage that it does not involve nonlinear optimization [4].

However, due to the complexity of industry, the application of
KPCA in process monitoring is not very good for some complicated
industrial processes fault and may cause false alarms.

Kernel entropy component analysis (KECA) is a new method
of data transformation and dimensionality reduction which has
been proposed by Robert Jenssen recently [5]. KECA is founded on
information theory and tries to preserve the maximum Renyi
quadratic entropy estimated via Parzen window rather than
depend on the second order statistics of the data set [6]. As a
result, no limitation of Gaussian-like assumption is involved before
we apply the KECA method. KECA may produce strikingly different
transformed data sets whose data transformation is achieved by
projecting onto the kernel PCA axes that contribute to the max-
imum entropy estimate of the input space data set in comparing to
KPCA method with data transformation corresponding to the top
eigenvalues of the kernel matrix. Some scholars have applied KECA
on face recognition, audio emotion recognition, data clustering
and denoising techniquewhich lead to better results than PCA and
KPCA [7–9]. However, there were few reports about the reseach on
the KECA applied in process monitoring. In addition, the actual
production data of chemical process inevitably contain random
and gross errors due to sensor noise, disturbances, instrument
degradation, and human errors. So when we only apply KECA for
process monitoring and fault detection, it will impact the effect
of process information treatment or analysis and reduce the
confidence degree of outcome by using these contaminated data.
Hence straightly using KECA is not fit for fault detection very well.

In order to improve the effect of KECA method application in
the field of fault identification, wavelet transform (WT) have
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shown that wavelet is an efficient tool for noise removal of noisy
signal and it has found applications in a variety of fields in
biomedical signal processing. Wavelet transform is a kind of
time–frequency analysis and it provides a useful alternative to
Fourier methods in the enhancement of nonlinear data. Wavelet
has characteristics of well time frequency localization, special
denoising ability and convenient extracting weak signals for signal
processing [10] so it has found applications in a variety of fields in
signal analysis, image processing, data compression, and process
modeling.

In this paper, we apply KECA method to dynamic nonlinear
process monitoring and it shows a better monitoring performance
than other approaches in the simulation of TE process. What's
more, according to the above discussion, this paper modifies KECA
with wavelet (WT-KECA), and proposes a novel process monitor-
ing algorithm. This method takes both advantaged of KECA and the
wavelet method and it also shows a better performance.

The remaining of this paper is organized as follows: Section 2
explains the KECA and wavelet analysis algorithms. In Section 3,
further discussion of WT-KECA on Process monitoring is described
and Section 4 is the simulation process of TE and discussion.
Finally, Section 5 concludes the paper.

2. Wavelet kernel entropy component analysis

According to the discussion in the previous section, the
improved method based on wavelet analysis and kernel entropy
component analysis is proposed in this paper, in which the original
signal is firstly decomposed by wavelet analysis, then the kernel
entropy component analysis method is applied to the prepro-
cessed data. In the following section, the basic principle of the
KECA and wavelet analysis will be introduced respectively.

2.1. Kernel entropy component analysis

The Renyi quadratic entropy [11] is given by

HðpÞ ¼ � log
Z

p2ðxÞdx ð1Þ

where pðxÞ is the probability density function of the data set, or
sample, D¼ x1; :::; xN . Because the logarithm is a monotonic func-
tion, we can consider the following quantity

VðpÞ ¼
Z

p2ðxÞdx ð2Þ

In order to estimate VðpÞ, and hence HðpÞ, we may invoke a
Parzen window density estimator described as

p̂ðxÞ ¼ 1
N

∑
N

i ¼ 1
Kσðx; xiÞ ð3Þ

here, Kσðx; xiÞ is the so-called Parzen window, or kernel, centered
at xi and with a width governed by the parameter σ.

Using the sample mean approximation of the expectation operator,
we have

V̂ðpÞ ¼ 1

N2 ∑
N

i ¼ 1
∑
N

j
Kσðxi; xjÞ ¼

1

N21
TK1 ð4Þ

Here, the element ði; jÞ of the N�N kernel matrix K is Kσðxi; xjÞ
and 1 is an (N � 1) vector containing all ones.

The Renyi entropy estimator may be expressed in terms of the
eigenvalues and eigenvectors of the kernel matrix, which may be
decomposed as K¼ EDλET , where Dλ is a diagonal matrix storing
the eigenvalues λ1; :::; λN and E is a matrix with the corresponding

eigenvectors e1; :::; eN as columns. Rewriting (4), we then have

V̂ðpÞ ¼ 1

N2 ∑
N

i ¼ 1
ð

ffiffiffiffi
λi

p
eiT1Þ2 ð5Þ

Each term in Eq. (5) will contribute to the entropy estimate.
This means that certain eigenvalues and eigenvectors will con-
tribute more to the entropy estimate than others since the terms
depend on different eigenvalues and eigenvectors. The eigenvalues
and eigenvectors selected are the first l largest contribution to the
entropy estimate in KECA so that the cumulative contribution rate
of the selected Renyi entropy reaches 85% of all the Renyi entropy.

In KPCA, the nonlinear map from input space to feature space is
given by ϕ : Rd-F such that xt-ϕðxtÞ; t ¼ 1;…;N.Let Φ¼ ½ϕðx1Þ;…;

ϕðxNÞ� and ui is the feature space principal axe. The projection of Φ
onto theith principal axis ui in the kernel feature space is defined
as Puiϕ¼ ffiffiffiffi

λi
p

eTi .Eq. (5) therefore reveals that the Renyi entropy
estimator is composed of projections onto all the kernel PCA axes.
Certainly, only a principal axis ei for which λia0 and eTi 1a0
contributes to the entropy estimate. Hence, ei is composed of a
subset of KPCA axes but not necessarily those corresponding to the
top l eigenvalues.

The kernel entropy component analysis procedure, as described
above, is summarized as follows:

(1) Select the kernel function and get the kernel matrix K;
(2) Compute the eigen-decomposition of K : K¼ EDλET ;
(3) Select the first l largest contribution to the entropy estimate

in KECA;
(4) Calculate the kernel feature space data points, Φeca ¼D1=2

l ET
l

and the components TN�l ¼KN�NEN�l.

2.2. Wavelet transform for denoising

Wavelet analysis is a new method of time–frequency analysis,
it has the characteristic of multi-resolution analysis and focus on
the details of signal points to make the time–frequency domain
analysis thus it has been called the “mathematical microscope”. In
this section, we will introduce the basic theory of wavelet.

2.2.1. Discrete wavelet transform
In discrete wavelet analysis, xðtÞ is decomposed on different

scale s as follows:

xðtÞ ¼ ∑
K

j ¼ 1
∑
1

k ¼ �1
djðkÞψ j;kðtÞþ ∑

1

k ¼ �1
aK ðkÞϕK;kðtÞ ð6Þ

where ψ j;kðtÞ are discrete analysis wavelets and ϕK;kðtÞ are discrete
scaling functions, djðkÞ are the detailed signals (wavelet coeffi-
cients) at scale 2j and aK ðkÞ is the approximated signal (scaling
coefficients) at scale 2K . The idea of discrete wavelet analysis is
presented by means of a wavelet decomposition tree.

The discrete wavelet transform can be implemented by the
scaling and wavelet filters

hðnÞ ¼ 1ffiffiffi
2

p ϕðtÞ;ϕð2t�nÞ� �
gðnÞ ¼ 1ffiffiffi

2
p ψðtÞ;ψ ð2t�nÞ� �¼ ð�1Þnhð1�nÞ ð7Þ

The estimation of the detail signal at level j will be done by
convolving the approximate signal at level j�1 with the coeffi-
cients gðnÞ. Convolving the approximate signal at level j�1 with
the coefficients hðnÞ gives an estimate for the approximate signal
at level j. The decomposition scheme involves retaining every
other sample of the filter output.
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