
Active learning via query synthesis and nearest neighbour search

Liantao Wang a, Xuelei Hu a,c,n, Bo Yuan d, Jianfeng Lu a,b

a School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
b Jiangsu Key Laboratory of Image and Video Understanding for Social Safety, Nanjing University of Science and Technology, Nanjing 210094, China
c School of Information Technology and Electrical Engineering, University of Queensland, Brisbane QLD 4072, Australia
d Intelligent Computing Lab, Division of Informatics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China

a r t i c l e i n f o

Article history:
Received 22 August 2013
Received in revised form
26 May 2014
Accepted 19 June 2014
Communicated by Steven Hoi
Available online 19 July 2014

Keywords:
Active learning
Query synthesis
Pool-based sampling
Kernel function

a b s t r a c t

Active learning has received great interests from researchers due to its ability to reduce the amount of
supervision required for effective learning. As the core component of active learning algorithms, query
synthesis and pool-based sampling are two main scenarios of querying considered in the literature.
Query synthesis features low querying time, but only has limited applications as the synthesized query
might be unrecognizable to human oracle. As a result, most efforts have focused on pool-based sampling
in recent years, although it is much more time-consuming. In this paper, we propose new strategies for a
novel querying framework that combines query synthesis and pool-based sampling. It overcomes the
limitation of query synthesis, and has the advantage of fast querying. The basic idea is to synthesize an
instance close to the decision boundary using labelled data, and then select the real instance closest to
the synthesized one as a query. For this purpose, we propose a synthesis strategy, which can synthesize
instances close to the decision boundary and spreading along the decision boundary. Since the synthesis
only depends on the relatively small labelled set, instead of evaluating the entire unlabelled set as many
other active learning algorithms do, our method has the advantage of efficiency. In order to handle more
complicated data and make our framework compatible with powerful kernel-based learners, we also
extend our method to kernel version. Experiments on several real-world data sets show that our method
has significant advantage on time complexity and similar performance compared to pool-based
uncertainty sampling methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Active learning is an important approach to constructing a high
performance classifier while keeping the amount of supervision to
a minimum by actively selecting the most valuable training
instances. As an effective way to reduce the cost of human
labelling, it has been successfully applied to various applications
[1,2], especially when labelling is difficult or time-consuming. In a
typical active learning cycle, the algorithm selects the most
valuable (informative [3] or representative [4]) instance and
requests its label. Then the new labelled instance is added to the
training set, and the classifier is retrained. Note that how to form a
query plays a key role in an active learning algorithm. In terms of
query formation, there are two scenarios of active learning in the
literature: query synthesis [5–7] and sampling, which can be
further divided into stream-based sampling [8,9] and pool-based
sampling [3,10–12].

In the scenario of query synthesis, the learner may generate a
query in the form of any unlabelled instance in the input space, i.e.
the query can be fictitious. By contrast, active learning based on
sampling selects real instances from the unlabelled set. Note that
stream-based sampling and pool-based sampling can share the
same criterion of value measure (e.g. uncertainty [3], query by
committee [13]), and the only difference is the way they access the
unlabelled data. Concretely, stream-based sampling selects one
instance at a time and decides whether to query it or not. Pool-
based sampling, however, maintains a pool consisting of unla-
belled data. At each iteration, it evaluates and ranks the entire
collection of unlabelled data before selecting the most valuable
one. Since pool-based sampling generates queries in a greedy
fashion, it is more effective and has attracted most of the research
interests, while stream-based sampling is only appropriate in
some special situations where memory or processing power is
limited.

Since query synthesis generates a query using a small amount of
labelled data, it is therefore very efficient. However sometimes
synthesized queries are unrecognizable to human oracle [14]. Pool-
based sampling is effective as it generates a query by evaluating the
entire unlabelled set, but it is very time-consuming. To make the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.06.042
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: ltwang.nust@gmail.com (L. Wang), xlhu@njust.edu.cn,

xuelei.hu@uq.edu.au (X. Hu), yuanb@sz.tsinghua.edu.cn (B. Yuan),
lujf@njust.edu.cn (J. Lu).

Neurocomputing 147 (2015) 426–434

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.06.042
http://dx.doi.org/10.1016/j.neucom.2014.06.042
http://dx.doi.org/10.1016/j.neucom.2014.06.042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.06.042&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.06.042&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.06.042&domain=pdf
mailto:ltwang.nust@gmail.com
mailto:xlhu@njust.edu.cn
mailto:xuelei.hu@uq.edu.au
mailto:yuanb@sz.tsinghua.edu.cn
mailto:lujf@njust.edu.cn
http://dx.doi.org/10.1016/j.neucom.2014.06.042

querying both fast and effective, we have proposed a framework that
combines query synthesis and pool-based sampling in [15]. In this
paper, we propose a new strategy for query synthesis and extend the
framework to kernel version. The main idea is that, at each iteration,
we synthesize an instance close to the current classification bound-
ary and search for its nearest neighbour among the unlabelled
instances as the actual query. Specifically, from the initially labelled
instances, we can obtain one positive instance and one negative
instance. We call these two instances with opposite labels an
Opposite Pair. According to the initial Opposite Pair, we first use an
efficient method to find another Opposite Pair close to the classifica-
tion boundary. After that, we iteratively synthesize a query along the
midperpendicular of the previously found Opposite Pair. This can
guarantee that the queries are close to the classification boundary
and well dispersed.

Since our method synthesizes a query directly, instead of
evaluating every instance in the unlabelled data pool, it has the
advantage of efficiency. Also by using the real instance nearest to
the synthesized one, it can make sure that the query is recogniz-
able to a human oracle. Our algorithm can be further accelerated
by using various approximate nearest neighbour search techni-
ques [16].

This strategy can select the instances closest to the decision
boundary, which are most informative. Moreover, instead of only
considering the informativeness of the query, we also take into
account the representativeness, and introduce pre-clustering in
our method to exploit the local structure of the data and construct
a compact and representative unlabelled pool based on local
centre points.

In order to handle more complicated data and make our
framework compatible with kernel-based learners such as support
vector machine (SVM), we further extend this framework with the
query strategy to kernel version. Queries can be synthesized in the
feature space without knowing the explicit non-linear mapping
function by kernel trick, which has been exploited in many
machine learning methods [17–20].

The rest of this paper is organized as follows: In Section 2, we
review the work related to our approach. Section 3 introduces our
approach in detail. Experimental results are reported in Section 4.
Section 5 concludes this work.

2. Related work

2.1. Query synthesis

Query synthesis was first proposed in [5], and further studied
in [21]. In this setting, a membership query is generated in the
form of any unlabelled instance in the input space. Baum [6] used
interpolation to synthesize queries to find separating hyperplane
efficiently, but later demonstrated that this kind of query cannot
work properly in vision-based task [14], because the human oracle
cannot recognize the query synthesized by the algorithm. After
that, although King et al. [22,7] found a promising real-world
application of query synthesis, few efforts have focused on synth-
esis query since an arbitrary query might be meaningless and
difficult for human to label.

2.2. Pool-based sampling

Pool-based sampling has been the most prosperous branch of
active learning, due to its effectiveness. It has been widely used in
many real world applications (e.g., text categorization [23], video
search [24], image classification [25] and action retrieval [26]).
Pool-based active learning was first introduced by Lewis and Gale
[10]. The algorithm maintains a pool consisting of unlabelled

instances and selects the most informative one at each iteration.
The main issue with active learning in this scenario is how to
measure the informativeness. The most commonly used strategies
are uncertainty sampling [10,27,28,11] and query by committee
[29,30,13]. There are also methods aiming at expected error
reduction [31,32]. Strategies such as uncertainty sampling and
query by committee can select the instances closest to the decision
boundary, which is most informative. However they only measure
the value of a single instance, as a result they may suffer from
querying similar instances repeatedly. To overcome this limitation,
the local structure of the data can be considered while selecting
queries. For example, clustering was introduced into active learn-
ing in [33,34] to select the most representative instances. Repre-
sentativeness is also taken into account in batch mode active
learning [35], where the authors considered an instance's similar-
ity to the remaining unlabelled instances. Huang et al. [12]
extended this min–max view of active learning to take into
account both the cluster structure of unlabelled instances and
the class assignments of the labelled instances. More recently,
Zhang et al. [4] used locally linear reconstruction to exploit the
intrinsic geometrical structure of the data, so as to select the most
representative instances.

3. Methodology

Suppose we have a training data set denoted by D¼L [U ,
where L is the labelled set with very small size and U consists of
large amount of unlabelled instances. The goal is to select the most
valuable instances for the classifier training from the unlabelled
set.

3.1. Algorithm

Similar to many other active learning algorithms, we assume
that the instances close to the classification boundary are generally
more ambiguous and their labels will provide more information to
the classifiers. As a result, we aim to find instances close to the
classification boundary.

Suppose fxþ ; x� g is an Opposite Pair. We can find instances on a
separating plane with high precision by interpolating iteratively
similar to binary search: We always query the point located in the
middle of the closest Opposite Pair. Concretely, let x1 ¼ ðxþ þx� Þ=2
and query its label. If x1 is positive (negative), we then query the
midpoint of x1 and x� ðxþ Þ. Repeating this process b times, we can
guarantee that xb is on a separating plane with b bits of precision [6].
An illustration of this process is shown in Fig. 1. Since the synthe-
sized query may not be recognized by the human oracle, in practice
we instead query its nearest neighbour rather than itself.

X-

X+

1

23

4

Fig. 1. The binary search process used to find a point very nearly on the separating
hyperplane given fxþ ;x� g. Queries are always generated by the midpoint of the
closest Opposite Pair. The first point 1 is positive. The second query thus is
the midpoint between query 1 and x� . After b queries, we have a point on the
hyperplane with accuracy 2�bd, where d is the distance between xþ and x� .

L. Wang et al. / Neurocomputing 147 (2015) 426–434 427

Download English Version:

https://daneshyari.com/en/article/409890

Download Persian Version:

https://daneshyari.com/article/409890

Daneshyari.com

https://daneshyari.com/en/article/409890
https://daneshyari.com/article/409890
https://daneshyari.com

