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a b s t r a c t

Usually many real datasets in pattern recognition applications contain a large quantity of noisy and

redundant features that are irrelevant to the intrinsic characteristics of the dataset. The irrelevant

features may seriously deteriorate the learning performance. Hence feature selection which aims to

select the most informative features from the original dataset plays an important role in data mining,

image recognition and microarray data analysis. In this paper, we developed a new feature selection

technique based on the recently developed graph embedding framework for manifold learning. We first

show that the recently developed feature scores such as Linear Discriminant Analysis score and

Marginal Fisher Analysis score can be seen as a direct application of the graph preserving criterion. And

then, we investigate the negative influence brought by the large noise features and propose two

recursive feature elimination (RFE) methods based on feature score and subset level score, respectively,

for identifying the optimal feature subset. The experimental results both on toy dataset and real-world

dataset verify the effectiveness and efficiency of the proposed methods.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many real datasets such as images and microarray data are
represented as very high dimensional vectors which bring great
challenge in data mining and further processing [1–3]. High
dimensionality not only increases the learning cost, but also
deteriorates the learning performance, known as the problem of
‘‘Curse of dimensionality’’ [4]. Hence dimensionality reduction
has attracted great attentions in pattern recognition and machine
learning applications such as computer vision and microarray
data analysis. Generally speaking, there are mainly two kinds of
dimension reduction techniques, i.e. feature extraction [5,6] and
feature selection [7,8], to tackle with the ‘‘Curse of dimension-
ality’’. Feature extraction refers to the techniques that map the
high dimension data (linearly or nonlinearly) to the lower
dimensional subspace under some constraints. And feature selec-
tion refers to selecting the most informative features from the
original dataset. Feature selection has received great attentions
and is being widely used in recent years. One typical application
of feature selection is the gene selection in the microarray
data analysis. In general, the original microarray data contains
thousands of genes (most of them are proved to be redundant)
with a small number of samples, which causes the small sample

size problem [6] and raises the difficulties in diagnosis. Hence,
selecting high discriminative genes (or features) from the rude
gene expression data can improve the performance of cancer
classification and cut down the cost of medical diagnosis.

Many feature selection methods have been proposed in recent
years. These methods can typically be categorized into two
groups: wrapper method [9,10] and filter method [11–14]. The
wrapper method selects the discriminative features dependently
on the classifier used. The wrapper method can be expected to be
of high performance, but it is difficult to scale to large datasets
owing to the expensive computation cost. The wrapper methods,
such as SVM-RFE can be expected of good performance in
identifying optimal feature subset [9]. However, they are compu-
tationally more expensive compared with filter methods and lack
of good generalization capability over classifiers [14]. What’s
more, if the classifier is not well trained, the performance of the
wrapper methods may decline.

The filter method refers to selecting informative features
according to their discriminative power without considering any
knowledge of the classifier. The filter method possesses the
advantages of high speed and capability of dealing with large
datasets, but lack of abilities to find the optimal feature subset.
Typical filter methods includes T-statistics [12], signal-to-noise
ratio method [2] and Fisher score [13]. These methods have
shown good performance on linear feature selection but poor
performance on nonlinear feature identification owing to that
they cannot reveal the mutual information among features. To
solve this problem, some new feature scores have been proposed
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recently based on the graph constructed on the samples, such as
Locality Sensitive Discriminant Feature (LSDF) score [1] and
Laplacian score [15]. Recently, Nie et al. proposed a subset level
(SL) score based method identifying the optimal feature. The SL
method can be viewed as a special filter method but shows much
better performance than traditional filter methods [14]. By
exploring the intrinsic structure of the dataset, we can possibly
find more informative features [1,14,15]. Particularly, via the
intrinsic graph, some features with complex nonlinear structures
can be identified, which is a hard problem for linear feature
selection methods such as SVM-RFE. However, their performance
may be declined as the noise features increase. Note that, in the
traditional graph based feature selection methods, the graph is
pre-computed with all features, including both informative and
noninformative features. When doing feature selection, one
assumes that only a small part of features are informative. Under
this scenario, one can hardly build a stable graph when there are
relatively large number of noise features. Correspondingly, the
performance of the feature selection can no longer be guaranteed.
An empirical study of this issue will be presented in Section 3.1.

Regarding the above ambiguity in graph based feature selec-
tion, in this paper, we assume that we can obtain a reasonable
graph which can relatively describe the relationship among
patterns with given features. Considering that with large number
of features, the graph can be contaminated by the noise features,
we start from all features and recursively build the graph with the
remaining features and then remove the non-informative features
with respect to the current graph. With this recursive strategy, we
proposed two new feature selection methods, namely the feature
score based recursive feature elimination method (FS-RFE) and
the subset level score based recursive feature elimination method
(SL-RFE). Although they are still local, the proposed methods can
be expected to have better performance. In summary, the con-
tributions of this paper are: (I) We reveal that the traditional
graph based feature selection methods are sensitive to large
noises. (II) To avoid the negative influence brought by the noise
features to the graph, we proposed an FS-RFE method and an
SL-RFE method for identifying the optimal feature subsets. The
experimental results verified the performances.

The rest of this paper is organized as follows. A short
introduction to the graph embedding framework is given in
Section 2. In Section 3, we present a feature score recursive
feature elimination method (FS-RFE) and a subset level score
recursive feature elimination method (SL-RFE) for feature selec-
tion. The experimental results are presented in Section 4. The
conclusions are finally discussed in Section 5.

2. Prior knowledge: graph embedding

For a general learning problem, let X¼ ½x1,x2, . . . ,xn� denote
the dataset and xnARm is a sample with m dimensions. The
dataset can also be written as X¼ ½f1,f2, . . . ,fm�

T , where f iARn

ði¼ 1;2, . . . ,mÞ are the feature vectors. In supervised learning
tasks, a sample xn is labeled by class label ciAf1;2, . . . ,ncg, where
nc is the number of classes. Generally, the dimension m is
always very large which increases the difficulties of learning.
Yan et al. present a novel unifying framework, named graph
embedding, to formulate various feature extraction methods and
provide new perspective in designing new methods [6]. In graph
embedding framework, an intrinsic graph G and a penalty
graph Gp are adopted. Graph G¼ fX,Sg and Gp

¼ fX,Sp
g are two

undirected weighted graphs with similarity matrix S and Sp that
can be the adjacency matrix or similarity matrix, depending on
different applications. Let L¼D�S be the Laplacian matrix of
graph G, where D is a diagonal matrix with entries Dii ¼

P
ia jSij.

Similarly we can get the Laplacian matrix Lp of Gp. The intrinsic
graph G denotes the similarity characteristics to be strengthened
while the intrinsic graph Gp refers to the similarity characteristics
to be suppressed. Simply suppose we project to a one dimensional
line, then the graph-preserving criterion of the graph embedding
framework is formulated as follows:

y¼ arg min
yT By ¼ D

X
ia j

Jyi�yjJ
2Sij, ð1Þ

where y is the lower dimensional representation of X with
y¼ ½y1,y2, . . . ,yn�

T . The above projection often appears in classifi-
cation, where the data is projected to a direction that is per-
pendicular to the separating hyperplane [16]. By simple algebra
calculation, we can get a simpler form with matrix formulations

y¼ arg min
yT By ¼ 1

yT Ly, ð2Þ

where matrix B can be the identity matrix I or the Laplacian
matrix of the penalty graph Gp, that is B¼ Lp. The constrained
minimization problem (1) and (2) can be interpreted as two
aspects: on the one hand, for those vertices near to each other,
we would like to make them be near in their lower representa-
tions, which can be realized by minimizing the objective function
of (1) or (2); on the other hand, for those vertices far from each
other, we would make them apart as far as possible, which can be
realized by maximizing yT By¼ 1. By taking the two aspects
together, it amounts to solve the constrained minimization
problem (2) or the constrained maximization problem (3)

y¼ arg max
yT Ly ¼ 1

yT By: ð3Þ

There are three extensions of the above graph preserving criterion,
i.e. linearization, kernelization and tensorization. In this paper,
only the linear extension will be considered. In the linear exten-
sion, suppose that the high dimension data X will be linearly
mapped to a lower dimensional subspace by linear projection
y¼wT X, where yARd. Then the optimal projection direction
w can be obtained by solving the following constrained maximi-
zation problem:

wn ¼ arg max
wT XLXT w ¼ 1

wT XBXT w: ð4Þ

The above constrained maximization problem can be reformulated
as a general Rayleigh quotient problem [17]:

wn ¼ arg max
w

wT XBXT w

wT XLXT w
: ð5Þ

Most of the linear feature extraction methods, such as Linear
Discriminant Analysis (LDA) [12], MFA [6] can be formulated
within the graph embedding framework. The only difference
among them just lies in the different definitions of the intrinsic
graph G and the corresponding penalty graph Gp. Here we only
present the graph definitions of LDA and MFA. LDA searches for
the projections that minimize the intra-class scatter and at the
same time maximize the inter-class scatter, which is equivalent to
the problem (5) by defining the intrinsic graph and the penalty
graph as

Sij ¼ dci ,cj
=nci

, ia j,

SP
ij ¼ 1=N�Sij, ia j,

8<
: ð6Þ

where dci ,cj
¼ 1, if ci ¼ cj, otherwise dci ,cj

¼ 0. Obviously in the
intrinsic graph of LDA, all the data points in the same class are
interconnected with weight Sij, while in the penalty graph the data
points from different classes are interconnected with weight SP

ij.
Therefore, LDA fails to discover the local geometrical structure of
the data manifold [6] and therefore can not deal with nonlinear
problems. To preserve the local structure of the original data in the
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