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a b s t r a c t

This paper presents a neural network based on a nonlinear dynamical control of a three-dimensional six
degrees of freedom planar redundant manipulator. An artificial controller is used for the computation of
fast inverse kinematics, and is effective on geometrically bounded singularities and joint limits
prevention of redundant manipulators. A comparison between the results of a multilayer back
propagation and the radial basis function neural network has been carried out, and the results show
that the radial basis function of neural networks is more attractive due to their fast training, simplicity,
and convergence rate. The radial basis function neural network has been used to estimate the centrifugal
and gravitational effects of the joints, while the end-effector follows a desired path.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

A robotic manipulator that have more degrees of freedom than
the number of independent task coordinates is known as a redun-
dant manipulator. Due to these extra degrees of freedom, the robot
is capable of performing auxiliary tasks such as singularity and joint
limits avoidance. Generally, redundancy specifies the internal move-
ment of the robot, without affecting the trajectory of the end-
effector,while permitting the robot to react in a better way to
itssurroundings. The important role of redundant robots in space
and oceans has promoted extensivere search on the topic [1,2].

Since redundant manipulators have more degrees of freedom
than required for position and orientation, multiple solutions for
this problem do exist. As a result, the redundancy of inverse
kinematic mappings complicates the manipulator control problem
considerably, in addition to its nonlinearity [3].

Generally, there are many algorithms for the redundant manip-
ulator inverse kinematics. These algorithms can be divided into
three categories [4], (1) the algebraic approach, (2) the iterative
approach, such as neural networks, genetics algorithm, and fuzzy
logic and (3) the geometric approach.

The algebraic approach suffers from the fact that it does not give
a clear indication on how to select the correct solution from the
several possible solutions for a particular arm configuration. The
iteration solution does not guarantee convergence to the correct
solution. Furthermore, just like the algebraic approach there is no
indication of how to choose the correct solution for a particular arm
configuration. The geometrical approach on the other hand can
provide the solution directly with simple calculations.

In order to take full advantage of the redundancy, various
computational schemes have been developed. Most current
researchers have utilized the pseudoinverse technique. Because
the inverse kinematics model gives an infinite number of solutions
for redundant manipulator, consequently, secondary performance
criteria can be optimized such as joint limits avoidance [5],
singularity avoidance [6,7], and obstacle avoidance [8–10]. In this
paper, the secondary performance criterion is avoiding the joint
limits and the singular configurations. Singularities are a serious
cause of difficulties in robotic analysis and control. Motions have to
be carefully planned in the region of singularities. This is not only at
the singularities themselves where there will be an unobtainable
motion at the end-effector, but also in the region surrounding a
singularity, the joint velocities will be extremely high, even for
relatively small end-effector velocities. This can lead to numerical
instability, and unexpected wild motions of the arm for small,
desired end-effector motions. Interior singularity will not occur
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using the method in this paper, because the angles between the
adjacent links are always the same. When two links are aligned this
means that all other links will be aligned as well, and this
configuration does not happen except when it is desirable to move
the end-effector on the boundary The singularity and joint limits
avoidance are discussed with details in the next section.

The kinematic equations describe the motion of the robot,
without taking into consideration the forces and moments that
produce the motion, while the dynamic equations explicitly
describe the relationship between force and motion. The equations
of motion are important when considering robotic designs, control
algorithm design, and simulations [11].

Simulating the motion of the manipulator allows control
strategies and motion planning techniques to be tested without
the need to use a physically available system. The analysis of the
dynamic model can help for the mathematical design of the arm
prototype, and the computations of the torques required for the
execution of typical motions provides useful information for
designing joints, transmissions and actuators [12].

The two basic problems associated with the dynamics of
robotic manipulators are the inverse and the forward problems.
Because the inverse problem is purely algebraic, it is conceptually
simpler to grasp than the forward problem, while also being
computationally simpler [13].

Because the inverse dynamic model provides the joint torques
and forces in terms of the joint positions, velocities and accelera-
tions, it is described by [14]

Γ ¼ f 1ðθ; _θ; €θÞ ð1Þ
with Γ is the vector of joint torques or forces and, θ, _θ, €θ are the
vectors of joint positions, velocities and accelerations respectively.

The forward dynamic model describes the joint accelerations in
terms of the joint positions, velocities and torques. It is repre-
sented by the relation [14]:

€θ¼ f 2ðθ; _θ;ΓÞ ð2Þ
Many efforts have been made in studying the dynamics of

robotic manipulators. Very few authors have studied seven
degrees of freedom manipulator [15], or six degrees of freedom
manipulator [16]. Other researchers have used six degrees of
freedom, but due to computational complexities, they calculate
the dynamics for just the first three degrees of freedom of the
manipulator [17]. Some researchers use a simple three degrees of
freedom planar manipulator [18], or even with only two degrees of
freedom [19,20]. The reason is in the complexity of mechanisms
models, which increases rapidly, in tandem with the number of
degrees of freedom [21].

In the last few decades, artificial intelligent control using neural
networks has undergone a rapid development to allow the design
of a feedback controller for complex systems. Artificial intelligent
control has proven to be very powerful techniques in the discipline
of systems control, especially when the controlled system is
difficult to mathematically model, or when the controlled system
has large uncertainties and strong nonlinearities [22,23].

Artificial neural networks, especially Backpropagation network,
have been successfully used in many fields of application. Recently,
many supporting facts on Backpropagation networks have been
demonstrated successfully in solving neural computation pro-
blems on linear algebra such as factorization of two-dimensional
polynomials, inversing nonsingular matrices, solving linear simul-
taneous algebraic equations and zeroing polynomials. The advan-
tage of these neural computation approaches is to provide more
flexible structures and suitable adaptive learning algorithms for
solving those linear algebraic problems. Generally, using Back-
propagation networks, the corresponding solutions for the pro-
blems involved can be simultaneously obtained due to the parallel

neural network structures. Specifically, when the data from the
problems involved change, the corresponding neural computation
approaches are capable of tracking the change by adaptive learn-
ing algorithms. So, it is envisaged that this novel neural computa-
tion approach is a vital research topic for intelligent computation
field in the next decade [24–26].

Due to the fact that radial basis function neural networks
provide a powerful technique for generating multivariate non-
linear mapping, and because of their simple topological structure,
the learning algorithm corresponds to the solution of a linear
problem, so the training of the network is rapid [27]. In this article,
the radial basis function neural networks have been used to
estimate the centrifugal and gravitational effects of the joints,
while the end-effector is following a desired path.

To avoid or reduce the disadvantages of the radial basis
function neural networks and the Probabilistic neural networks,
the radial basis probabilistic neural networks was used in. The
construction of radial basis probabilistic neural networks involves
four different layers: one input layer, two hidden layers and one
output layer. The first hidden layer is a nonlinear processing layer,
which generally consists of hidden centers selected from a training
samples set. The second hidden layer selectively sums the outputs
of the first hidden layer, which generally has the same size as the
output layer for a labeled pattern classification problem. In
general, the weights between the first and the second hidden
layer are set as fixed values (1 or 0) and do not require learning.
Generally, the first hidden layer is tightly interrelated to the
performance of the radial basis probabilistic neural networks [28].

Just as for the radial basis function neural networks, in the first
hidden layer of the radial basis probabilistic neural networks, the
hidden centers number and locations as well as the controlling
parameters of the kernel function are quite important indices. Too
many hidden centers will lead to very lengthy training and testing
time, and poor generalization capability, while, too few hidden
centers can lead to quite great convergent error. In addition, the
selected hidden centers will require especial controlling parameters
in order to realize the entire overlay of training samples in space [29].

Because of the radial basis function of neural networks ability,
due to their fast training and convergence, it has been used in this
work to calculate the simulation results. The next section com-
pares the results of these two algorithms.

2. Kinematics of the manipulator

A manipulator with n joints, whose link position variables are
denoted by θ¼[θ1, θ2,…,θn]T, that are used to controlm independent
variables of the end-effector, can be described by x¼[x1, x2,…, xm]T

(mr6), and is described by the following kinematic equation [2]:

_x¼ J _θ ð3Þ
where _x is anm-dimensional vector of Cartesian velocity (linear and
angular) components of the end-effector with reference to the base
coordinates, _θ is an n-dimensional vector of joint velocities, and J is
an m�n Jacobian matrix. Unless otherwise stated, m will be
assumed to equal to six, implying that six independent variables
are required to describe the end-effector.

If J is a square matrix (m¼n) and has a rank equal to m (full
rank), then joint velocities required to achieve the desired end-
effector velocity will be unique and can be evaluated by

_θ¼ J�1 _x ð4Þ
If J is singular or rectangular with mon, the vector _θ can be
computed by the following commonly used method:

_θ¼ Jþ _xþðI� Jþ JÞ _ϕ ð5Þ
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