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a b s t r a c t

Matching images using Mean Squared Error (MSE) and Peak Signal to Noise (PSNR) ratios does not well
conform to the Human Visual System (HVS). When matching two images, HVS operates both globally and
locally when it identifies features of a scenery and this process is not matched adequately by PSNR or MSE.
A lowMSE or very high PSNRmay not necessarily mean that images are similar. Similarly, when images are
similar as HVS would identify, the correspondingMSE may not be very low and PSNRmay not be very high.
However, quite recently, a new measure has been proposed to circumvent the drawbacks of PSNR or MSE.
This measure known as Structural Similarity Measure (SSIM) has received acclaim due to its ability to
produce results on a par with Human Visual System. However, experimental results indicate that noise and
blur seriously degrade the performance of the SSIM metric. Furthermore, despite SSIM's popularity, it does
not provide adequate insight into how it handles ‘structural similarity’ of images. We propose a new
structural similarity measure based on approximation level of a given discrete Wavelet decomposition that
evaluates moment invariants to capture the structural similarity with superior results over SSIM.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Today, there are thousands of image databases in use by
different countries to assist in law enforcement in analyzing stolen
art, look for counterfeit notes, face detection [1,2] at entry points
and many other scientific analysis. Comparing a section of a
counterfeit note against a sample with high precision would be a
tremendous advantage for the law enforcement authorities. Then
there are human faces that differ due to aging, illness or harsh
environmental conditions may escape the scrutiny of the law
enforcement due to weaknesses in algorithms that might not be
as flexible as human perception. Striking a balance between these
two extreme ends and modeling such requirements into a metric
would not be a small task. Every day, a countless number of
images are uploaded onto Internet and other databases by millions
of users as part of their occupation or pastime. Law enforcement
agencies such as FBI in the USA have successfully developed the
worlds largest Fingerprint database which is used extremely
successfully for the past decade. Gatwick airports at London in
the UK have successfully used iris detectors to check immigrant for
illegal entry over the past 7 years. These are some of the image
matching approaches being successfully run around the world
mimicking human ability to detect with machine precision. Some

of the above success stories have been heard due to the nature of
the controlled environments that they are being operated in. An
iris scanner would prompt a user to pose for a capturing device in
an orderly manner. A finger print will be nothing more than few
lines and they can be enhanced if not properly captured. However,
being able to run through online items for sale looking for a stolen
artefact would be much more challenging as these uploaded
images are taken from different angles under different lighting
conditions. Such uncontrolled environments pose a great
challenge in identifying faces when people walk in crowds.
Humans are quite capable of identifying faces even under dis-
guises. Yet, face recognition is a monumental task in uncontrolled
environments.

Earlier attempts to match images relied on single discriminants
such as color histograms [3]. However, different images may have
very similar histograms and when large databases are searched,
single discriminant approach does have many drawbacks. Another
well-known approach has been to Mutual Information (MI). This
refers to the concept of finding the relationship between corre-
sponding individual pixels disregarding the pixel's respective
neighborhood [4]. This results in loosing much of the spatial
information further distancing it from the Human Visual System.
Modern techniques rely on few features extracted from images
such as color, texture and shape [5–7]. Different approaches
have developed different metrics to directly compare images
using compression coefficients such as the Karhueneen–Loeve
transformation [8]. However, researchers are unsure whether
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these metrics have a good correlation with the human perception
of image similarity [9].

2. Image similarity basics

2.1. Pixel based image similarity

When comparing two images, the most obvious approach is to
match corresponding pixels. This is the simplest approach in
which two corresponding pixels of images are compared giving
rise to the following expression:

Pd1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i ¼ 1
∑
m

j ¼ 1
ðf ði; jÞ�gði; jÞÞ2

s
: ð1Þ

Here the two images f and g are of sizes m� n. Another metric
based on pixel difference can be calculated as

Pd2¼ ∑
n

i ¼ 1
∑
m

j ¼ 1
ðf ði; jÞ�gði; jÞÞ2 ð2Þ

and is known as the Mean Squared Error (MSE) and has been used
extensively over the decades. The main drawback of MSE is that it
does not correlate well with human perception. Image similarity
can also be assessed using correlation. The following equation
denotes the normalized correlation where correlation between
two images has been divided by square rooted autocorrelation of
both target and reference objects:

Pd3¼
∑n

i ¼ 1∑
m
j ¼ 1f ði; jÞngði; jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i ¼ 1f ði; jÞ2∑m

j ¼ 1gði; jÞ2
q : ð3Þ

Another interesting metric namely Pattern Intensity (PI) oper-
ates on the assumption that the structures would vanish from the
difference if the images are aligned [10]. A pixel is considered to
belong to a structure if it has a significantly different intensity
from its neighboring pixels. For two images f and g the following
expressions show the PI:

Iði; jÞ ¼ f ði; jÞ�kgT ði; jÞ

PIr;s ¼∑
i;j

∑
d2 rs2

s2

s2þððIði; jÞ� Iðv;wÞÞ2Þ
:

d2 ¼ ði�vÞ2þðj�wÞ2: ð4Þ
As stated above, all the pixels within a radius r are considered in
the calculation. The role of s is to weight the function so that small
variations in intensity caused by noise due to varying lighting
conditions would not result in significant changes in metric [4].
These different metrics do not provide any comprehensive solu-
tion for image matching that would agree with HVS. Many
researchers have felt that a suitable combination of metrics would
provide an amicable solution.

2.2. Combined metrics

Comparing two images accurately to ascertain whether there is
a match or not is essential for many image processing related
applications such as watermarking, compression and content
retrieval. As pointed out before, age-old metrics such as Mean
Squared Error (MSE) have been used for decades despite its
inability to agree with human subjective analysis [11,12]. Recently,
light has been shed on a new metric that seems to agree with
Human Visual System [12]. The SSIM is supposed to estimate
image degradation as perceived change in structural information.
Structural information contains strong inter-dependencies of pix-
els especially when they are spatially close. These dependencies

carry important information about the structure of the objects in
the visual scene. SSIM has been singled out due to its claim of
superiority over the existing metrics [13,14]. However, it has been
observed that SSIM does not perform well with blurred images
[13]. Since a blurred version of an image essentially contains the
same structure, SSIM's inability to measure the structural similar-
ity of blurred images raises an issue as to whether SSIM does truly
look for the structural content. From our research, we have
concluded that despite SSIM's claim of superiority, its ability to
compare similar structures is doubtful as will be demonstrated in
Section 4. We have developed a new metric that uses some of the
concepts exploited by SSIM [15]. The new metric demonstrates
better performance over SSIM in blurred images and images
corrupted by Gaussian and Salt & Pepper noise.

2.3. Structural similarity measure

SSIM attempts to separate the task of similarity measurement
of two images into luminance, contrast and structure [13]. Hence,
a similarity measure is defined as

SSIMðP1;P2Þ ¼ lðP1;P2Þ � cðP1;P2Þ � sðP1;P2Þ ð5Þ

where P1 and P2 are the two images being compared and l, c and s
stand for luminosity, contrast and similarity measures respec-
tively. Mean μ and standard deviation s of images P1 and P2 are
defined as follows:

μP1 ¼
1

M � N
∑

M�1

y ¼ 0
∑

N�1

x ¼ 0
P1ðx; yÞ

sP1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ðM � N�1Þ ∑

M�1

y ¼ 0
∑

N�1

x ¼ 0
ðP1ðx; yÞ�μP1Þ2

s

sP1sP2 ¼
1

M � N�1
∑

M�1

y ¼ 0
∑

N�1

x ¼ 0
ðP1ðx; yÞ�μP1ÞðP2ðx; yÞ�μP2Þ

Furthermore, l, c and s for images P1 and P2 are calculated as
follows [13]:

lðP1;P2Þ ¼
2μP1μP2þC1

μ2P1þμ2P2C1

cðP1;P2Þ ¼
2sP1sP2þC2

s2
P1þs2

P2þC2

sðP1;P2Þ ¼
sP1P2þC3

sP1sP2þC3
:

Constants C1, C2 and C3 are used for the stability of equations
when they are extremely small. Combining the above definitions,
Eq. (1) can be expressed as follows when C3 ¼ C2=2 for simplicity
[13]:

SSIMðP1;P2Þ ¼
ð2μP1μP2þC1ÞðsP1P2þC2Þ

ðμ2P1þμ2P2C1Þðs2
P1þs2

P2þC2Þ
:

The expression sðP1;P2Þ is a simple function of cross correlation. It
does not contain any notion of structure as structure in an image
would represent directionality of objects and how they are
organized. Cross correlation would only capture similarity of pixels
and not structure. This clearly indicates that SSIM does not
evaluate structure and hence should not be misrepresented as
evaluating structure. Section 4 would clearly indicate the evidence
of SSIM's inability to evaluate structure.

P. Premaratne, M. Premaratne / Neurocomputing 137 (2014) 65–7066



Download English Version:

https://daneshyari.com/en/article/409923

Download Persian Version:

https://daneshyari.com/article/409923

Daneshyari.com

https://daneshyari.com/en/article/409923
https://daneshyari.com/article/409923
https://daneshyari.com

