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a b s t r a c t

Our work aims at developing or expliciting bridges between Bayesian networks (BNs) and Natural
Exponential Families, by proposing discrete exponential Bayesian networks as a generalization of usual
discrete ones. We introduce a family of prior distributions which generalizes the Dirichlet prior applied
on discrete Bayesian networks, and then we determine the overall posterior distribution. Subsequently,
we develop the Bayesian estimators of the parameters, and a new score function that extends the
Bayesian Dirichlet score for BN structure learning. Our goal is to determine empirically in which contexts
some of our discrete exponential BNs (Poisson deBNs) can be an effective alternative to usual BNs for
density estimation.

& 2014 Published by Elsevier B.V.

1. Introduction

Probabilistic graphical models, specifically Bayesian networks
are tools for knowledge representation under uncertainty. Under
usual hypotheses, the joint probability distribution associated to a
BN is decomposed in the product of local conditional probability
distribution of each variable given its parents in the graph.

Some Bayesian estimation methods can be used in order to
estimate the parameters of each conditional probability distribution,
given one dataset and one a priori distribution over the parameters.
The computation of the posterior distribution is useful for two
purposes: to estimate the probability of a graph given the data and
then to find the better graph (structure) that fits the data [6,17,16].

Reviewing the literature, we find abundant research and works
dealing with discrete Bayesian network, where the conditional
distribution of each variable, given its parents, is a multinomial
distribution [28].

In this paper, we are interested in extending the distribution of
variables to the natural exponential family (NEF) which represents a
very important class of distributions in probability and statistical
theory [2,24]. This idea has previously been developed by Beal
and Ghahramani [3] (conjugate–exponential models) for Bayesian

networks with latent variables. They concentrated their work on
variational ExpectationMaximization (EM) estimation needed because
of latent variables, but they did not clarify the Bayesian estimators
used, hence restricting their experiments to the usual multinomial
distributions. Wainwright and Jordan [30] also proposed an interesting
study of graphical models as exponential families, showing that very
specific structures of directed or undirected probabilistic graphical
models can be interpreted as exponential distributions. Our work
pursues with the same general idea, developing bridges between BNs
and NEFs, dealing with discrete exponential BNs instead of usual
multinomial ones in order to explore a wider range of probabilistic
models. We formally introduce a family of prior distributions valid for
any NEF distribution and show that this family of priors generalizes
the Dirichlet prior used in discrete multinomial BNs. Then, we are able
to express the global posterior distribution and a new score function
for learning the structure of any discrete exponential BN, and the
Bayesian estimators for parameters of such BNs. Our work aims to
determine empirically in which contexts one class of these discrete
exponential Bayesian networks (Poisson deBNs) can be an effective
alternative to usual Bayesian networks for density estimation.

The present paper is structured as follows. In Section 2, we
review existing results for discrete multinomial BN learning. After
that, in Section 3, we review some of the properties of natural
exponential families with quadratic variance functions. In Section
4, we propose our results concerning structure and parameters
learning for discrete exponential BNs. Section 5 aims at expliciting
our experimental protocol, evaluation criteria, and gives an inter-
pretations of results. Finally, we conclude with perspectives for a
future work.
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2. Discrete Bayesian network background

2.1. General definition

Consider a finite set X ¼ fX1;…;Xng of random variables.
A Bayesian network (BN) is a directed acyclic graph G and a set
of conditional probability distributions which represent a joint
probability distribution

PðX1;…;XnÞ ¼ ∏
n

i ¼ 1
PðXijpaiÞ ð1Þ

where pai represent the parents of node Xi in G.
Bayesian networks allow to represent distributions compactly

and to construct efficient inference and learning algorithms.
Distinct directed acyclic graphs may sometimes encode the same
set of independence relations and hence, may be considered as
Markov equivalent graphs.

In what follows, we assume that the local distributions depend
on a finite set of parameters μ¼ ðμijÞ1r irn;1r jrqi , where qi is the
number of parent configurations for variable Xi.

Usually, as described in [28], discrete Bayesian networks
studied in the literature assume that local conditional distributions
PðXijpaiÞ are multinomial distributions Multð1;μij1;…;μijri

Þ, i.e.
multivariate Bernoulli distributions with parameters ðμij1;…;μijri

Þ.

2.2. Structure learning

Learning Bayesian network structure from dataset is a NP-hard
problem [5] and is still one of the most exciting challenges in
machine learning.

There are three classical approaches often used for BN structure
learning. First, constraint-based methods consist in detecting (in)
dependencies between the variables by performing conditional
independence tests on data. Second, score-and-search based
approaches use a score function to evaluate the quality of a given
structure and a heuristic to search in the solution space. The third
hybrid approach merges the two previous approaches.

In previous works, Acid et al. [1], Brown et al. [4], Fu [11] and
Tsamardinos et al. [29] provide comparisons of Bayesian network
learning algorithms. Recently, Daly et al. [9] states that score-and-
search approaches are some of the most successful strategies for
learning Bayesian networks. Even a simple heuristic such as
greedy search [6] can produce good results. The choice of the
scoring function is also an open question. This function, often
related to the marginal likelihood can be approximated in several
ways [7]. Daly et al. [9] proposes some elements in order to
compare the two main scoring functions, the large scale approx-
imation (BIC) [13] and the Bayesian Dirichlet approximation
described below.

Lemma 2.1. Suppose that we have one dataset d¼ fxð1Þ;…; xðMÞg of
size M where xðhÞ ¼ ðxðhÞ1 ;…; xðhÞn Þ0 is the hth sample and xðhÞi is the
value of the variable Xi for this sample. Therefore, the distribution of
the dataset d given μ¼ ðμ1;…;μnÞ and the structure G is

Pðdjμ;GÞ ¼ ∏
n

i ¼ 1
∏
M

h ¼ 1
PðxðhÞi jpaðhÞi ;μi;GÞ ð2Þ

where paðhÞi contains the values of the parents of xi in the hth sample.

Given a structure G, we denote by Nijk the number of samples in
d where Xi is in its kth state and its parents are in their jth
configuration, by Nij ¼∑ri

k ¼ 1Nijk the number of samples in dwhere
pai is in the jth configuration, ri denotes the number of states of Xi,
qi the number of parents configurations of Xi. We suppose that the
conditional distribution of Xi given pai is a multinomial distribu-
tion Multð1;μij1;…;μijri

Þ which corresponds to the multivariate

Bernoulli distribution with parameters ðμij1;…;μijri
Þ. Starting from

a prior distribution about the possible structures P(G), the objec-
tive is to express the posterior probability of all possible structures
conditional on a dataset d. After some calculation and using a
Dirichlet prior, we get the Bayesian Dirichlet (BD) scoring function:

BDðd;GÞ ¼ Pðd;GÞ ¼ PðGÞ ∏
n

i ¼ 1
∏
qi

j ¼ 1

ΓðαijÞ
ΓðNijþαijÞ

∏
ri

k ¼ 1

ΓðNijkþαijkÞ
ΓðαijkÞ

ð3Þ

where αijk are the parameters of the Dirichlet prior distribution.
Heckerman et al. [17] propose a constraint on Dirichlet coeffi-

cients to be used in order to obey to the Markov equivalence:

αijk ¼N0PðXi ¼ k; pai ¼ jjGcÞ ð4Þ
where Gc denotes the completely connected graph and N0 is an
equivalent sample size defined by the user.

2.3. Parameter learning

The following theorem is introduced in the context of Bayesian
networks under the name of global posterior independent
parameters.

Theorem 2.2. Under the same conditions of Lemma 2.1, we suppose
that μ¼ ðμiÞ1r irn are mutually independent given a dataset d, thus

Pðμjd;GÞ ¼ ∏
n

i ¼ 1
Pðμijd;GÞ ð5Þ

In the case of discrete BNs where the joint distribution is a
multinomial one and the prior is a Dirichlet distribution, the EAP
(expected a posteriori) estimator of μij ¼ ðμijkÞ1rkr ri is given by

bμEAP
ijk ¼ Nijkþαijk

∑ri
l ¼ 1ðNijlþαijlÞ

; k¼ 1;…; ri: ð6Þ

Note that the MAP (maximum a posteriori) estimator is

bμMAP
ijk ¼ Nijkþαijk�1

∑ri
l ¼ 1ðNijlþαijl�1Þ; k¼ 1;…; ri: ð7Þ

3. Natural exponential families

3.1. Introduction and definitions

The exponential family is a widely used family of distributions.
The natural exponential families (NEFs) is a subclass of this family,
with interesting estimation properties [2]. In the last decades,
several classifications of natural exponential families based on the
form of the variance function have appeared in literature [25,15].
There are six basic natural exponential families having quadratic
variance functions distributions: Normal, Poisson, Gamma, Bino-
mial, Negative Binomial and the NEF generated by the generalized
hyperbolic secant distributions. For an accurate presentation of the
simple quadratic natural exponential families, let us begin with
some traditional definitions and notations in Statistics. For more
details, we refer to [24]. Let ðθ; xÞ⟼〈θ; x〉 be the canonical scalar
product on Rd � Rd. For a positive measure ν on Rd, we denote

Lν : Rd⟶½0; þ1½
θ⟶

Z
Rd

exp 〈θ; x〉νðdxÞ

ΘðνÞ ¼ intfθARd; LνðθÞoþ1g, kν ¼ log Lν.
Lν and kν are, respectively, the Laplace transform and the

cumulant generating function of ν. The set MðRdÞ is now defined
as the set of positive measures ν such that ν is not concentrated on
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