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a b s t r a c t

Linear discriminant analysis (LDA) searches for a linear transformation that maximizes class separability
in a reduced dimensional space. Because LDA requires the within-class scatter matrix to be non-singular,
it cannot be directly applied to small sample size (SSS) problems in which the number of available
training samples is smaller than the dimensionality of the sample space. To solve SSS problems, this
paper develops a system of regularized complete linear discriminant analysis (RCLDA). In RCLDA, two
regularized criteria are used to derive discriminant vectors that include “regular” and “irregular”
discriminant vectors in the range space and null space, respectively, of the within-class scatter matrix.
Extensive experiments on the SSS problem of image recognition are performed to evaluate the proposed
algorithm in terms of classification accuracy, and the experimental results demonstrate its effectiveness.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Dimensionality reduction (DR), a common method of handling
high-dimensional data, can be divided into the processes of
feature selection and feature extraction. Feature selection tries to
find a subset of the original variables, and feature extraction
transforms the data from the high-dimensional space to a low-
dimensional space. DR techniques have attracted much attention
in the field of pattern recognition. Principal component analysis
(PCA) [1] and linear discriminant analysis (LDA) [2] are the two
most popular dimensionality reduction algorithms because of
their relative simplicity and effectiveness. As an unsupervised
method, PCA computes eigenvectors of the data covariance matrix
and approximates the original data samples by linear combina-
tions of the leading eigenvectors. In contrast, LDA takes the class
labels into consideration and seeks a linear transformation that
maximizes class separability in the reduced dimensional space.
LDA requires the within-class scatter matrix to be non-singular,
and the linear transformation can be found by applying an Eigen-
decomposition on the scatter matrices of the given training
dataset.

In many interesting machine learning and data mining pro-
blems, such as information retrieval, microarray data analysis, face
recognition, and the number of available training samples are
generally smaller than the dimensionality of the sample space.
These problems are known as small sample size (SSS) problems,
and have a significant influence on the design and performance of

pattern recognition systems. For SSS problems, as the within-class
scatter matrices are singular, LDA cannot be directly applied.

To address SSS problems, many extensions of LDA have been
proposed. Linear algebra techniques were applied by pseudo-
inverse LDA (PLDA) [2–5] to solve the numerical problem of
inverting the singular within-class scatter matrix. PLDA finds the
linear transformation by applying an Eigen-decomposition to the
matrix Sþ

w Sb, where Sþ
w is the pseudoinverse of the within-class

scatter matrix and Sb is the between-class scatter matrix. Based on
the generalized singular value decomposition (GSVD) technique,
LDA/GSVD [6,7] aims to find an optimal transformation A that
would minimize the trace of the matrix ðATSbAÞþ ðATSwAÞ. Reg-
ularized LDA (RLDA) [8–10] regularizes the within-class scatter
matrix so that the regularized within-class scatter matrix is non-
singular and LDA can be applied. RLDA is both space and time
consuming, and efficient algorithms for RLDA were proposed
[11,12]. The two-stage PCA plus LDA framework [13–15] is another
technique for dealing with SSS problems. In this framework, an
intermediate dimension reduction stage applies PCA to reduce the
dimension of the original data before performing LDA. The
dimension of the subspace transformed by PCA is chosen such
that the total scatter matrix or the within-class scatter matrix of
the mapped data points in the subspace is non-singular. Then, LDA
can be applied in the subspace. Because the rank of the within-
class scatter matrix is at most n�c, where n is the number of
training samples and c is the number of classes, Fisherface [13]
uses PCA to reduce the dimension of the feature space to n�c to
overcome the singularity problem. A limitation of the PCA plus
LDA framework is that it is difficult to determine the optimal value
of the reduced dimension for PCA. Since the null space of the
within-class scatter matrix contains significant discriminatory
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information [16], the PCA stage may lose some useful information
for discrimination. Yu and Yang [17] suggested extracting the
optimal discriminant vectors within the range space of the
between-class scatter matrix, and proposed the direct LDA (DLDA)
algorithm. DLDA is suboptimal in theory, and may discard some
discriminatory information in the null space of the within-class
scatter matrix. Chen et al. [16] projected the original space to the
null space of the within-class scatter matrix, and then obtained
the optimal discriminant vectors by finding the eigenvectors
corresponding to the largest nonzero eigenvalues of the “reduced”
between-class scatter matrix. However, Chen et al.'s algorithm
(NLDA) is not efficient. Cevikalp et al. [18] proposed the discrimi-
native common vectors (DCV) method for face recognition. Indeed,
NLDA and DCV find the same projection subspace and obtain the
optimal discriminant vectors in the null space of the within-class
scatter matrix. Both NLDA and DCV overlook the discriminant
information in the range space of the within-class scatter matrix.
To find the discriminant vectors, maximal margin criterion (MMC)
[19,20] maximizes the average margin between classes and is
reported to be very effective for face recognition. Yang and Yang
[21] built a theoretical foundation for the PCA plus LDA framework
by proving that all optimal discriminant vectors can be derived
from the range space of the total scatter matrix, and they
suggested a complete linear discriminant analysis (CLDA) algo-
rithm. CLDA finds irregular discriminant vectors in the null space
of the within-class scatter matrix and regular discriminant vectors
in the range space of the within-class scatter matrix. For classifica-
tion, two kinds of discriminant feature vectors are fused in the
decision level, and the fusion coefficient determines the weight of
regular discriminant information [21,22].

In this paper, we propose a method of regularized complete
linear discriminant analysis (RCLDA) to deal with SSS problems.
RCLDA uses two regularized criteria to derive regular discriminant
vectors in the range space of the within-class scatter matrix and
irregular discriminant vectors in the null space of the within-class
scatter matrix. For classification, the weight of regular discrimi-
nant information is determined while finding the discriminant
vectors. The rest of the paper is organized as follows. Since RCLDA
is based on CLDA, in Section 2, we briefly review the CLDA
algorithm. Following that, RCLDA is introduced and analyzed in
Section 3. In Section 4, we report on experiments conducted to
demonstrate the effectiveness of the proposed algorithm. Our
conclusions are given in Section 5.

2. Complete linear discriminant analysis

Given a training set composed of c classes, ni denotes the
number of samples in the ith class, xijARm is the jth sample from
the ith class, and a total of n¼∑c

i ¼ 1ni samples are available in the
set. The between-class scatter matrix Sb and the total scatter
matrix Sw can be written as

Sw ¼ 1
n

∑
c

i ¼ 1
∑
ni

j ¼ 1
ðxi

j�miÞðxi
j�miÞT ;

Sb ¼
1
n

∑
c

i ¼ 1
ðmi�mÞðmi�mÞT ;

where mi is the centroid of the ith class and m is the centroid of
the training set. LDA focuses on finding a linear transformation A¼
(a1,…, ad) that maximizes the criterion

J1ðAÞ ¼ argmax
A

jATSbAj
jATSwAj

:

when Sw is non-singular, the transformation matrix A is obtained
by finding the eigenvectors corresponding to the d largest

generalized eigenvalues of Sba¼λSwa. The linear transformation
A maps each data sample in the m-dimensional space to a vector
in the reduced d-dimensional space (d⪡m). For a sample x in the
m-dimensional space, the embedded sample y in the d-dimen-
sional space is given by y¼ATx.

The within-class scatter matrices are singular in SSS problems,
meaning that LDA cannot be directly applied. All optimal discri-
minant vectors can be derived from the range space of the total
scatter matrix without any loss of the discriminatory information
[21,22]. So, for SSS problems, all discriminant vectors can be
extracted from the PCA transformed space, in which LDA can be
performed. Suppose p1,…, pm are m orthonormal eigenvectors of
St, and the first s (s¼rank(St)) correspond to the nonzero eigen-
values, where St is the total scatter matrix. In the PCA transformed
space, CLDA derives regular discriminant vectors in the range
space of the within-class scatter matrix and derives irregular
discriminant vectors in the null space of the within-class scatter
matrix. Suppose q1,…, qs are s orthonormal eigenvectors of PTSwP,
and the first k (k¼rank(PTSwP)) correspond to nonzero eigenva-
lues, where P¼(p1,…, ps). Let Q1¼(q1,…, q k) and Q2¼(qkþ1,…,
qs). The column vectors of PQ1 form an orthonormal basis for R
(Sw), where R(Sw) denotes the range space of Sw. (PQ1)TSbPQ1 is
the “reduced” between-class scatter matrix and (PQ1)TSwPQ1 is
the “reduced” within-class scatter matrix in the range space of Sw.
Regular discriminant vectors are found with respect to the
criterion

J2ðuÞ ¼
uT ðPQ 1ÞTSbPQ 1u
uT ðPQ 1ÞTSwPQ 1u

: ð1Þ

Suppose u1,…, ud (drc�1) are the generalized eigenvectors of
(PQ1)TSbPQ1u¼λ(PQ1)TSwPQ1u corresponding to the d largest
positive eigenvalues. Then, PQ1u1,…, PQ1ud are the optimal
regular discriminant vectors. Since (PQ2)TSwPQ2¼0, the column
vectors of PQ2 form an orthonormal basis for R(St)\N(Sw), where R
(St) denotes the range space of St and N(Sw) denotes the null space
of Sw. Thus, irregular discriminant vectors can be derived from the
range space of PQ2. (PQ2)TSbPQ2u is the “reduced” between-class
scatter matrix in the null space of Sw. Irregular discriminant
vectors are found with respect to the criterion

J3ðvÞ ¼
vT ðPQ 2ÞTSbPQ 2v

vTv
: ð2Þ

Suppose v1,…, vl (lrc�1) are the eigenvectors of
(PQ2)TSbPQ2v¼λv corresponding to the l largest positive eigenva-
lues. Then, PQ2v1,…, PQ2vl are the optimal irregular discriminant
vectors.

Projecting a sample x onto the regular discriminant vectors, we
can obtain the regular discriminant feature vector

y1 ¼UTðPQ 1ÞTx;

where U¼(u1,…, ud). Similarly, projecting the sample x onto the
irregular discriminant vectors, we can obtain the irregular dis-
criminant feature vector

y2 ¼VTðPQ 2ÞTx;

where V¼(v1,…, vl). CLDA fuses the regular and irregular discri-
minant feature vectors in the decision level for classification.
Denote a pattern y¼[y1, y2], where y1 and y2 are the regular and
irregular discriminant feature vectors, respectively, of the same
sample. The summed normalized-distance [10] between sample y
and the training sample yi¼[yi1, yi2] (i¼1,…, n) is defined by

gðy; yiÞ ¼ θ
jjy1�y1i jj

∑n
j ¼ 1jjy1�y1j jj

þ jjy2�y2i jj
∑n

j ¼ 1jjy2�y2
j jj

; ð3Þ
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