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a b s t r a c t

This paper is concerned with the robust state estimation problem for a class of discrete-time delayed
neural networks with linear fractional uncertainties (LFUs) and successive packet dropouts (SPDs). The
mixed time delays (MTDs) consisting of both discrete time-delays and infinite distributed delays enter
into the model of the addressed neural networks. A Bernoulli distributed white sequence with a known
conditional probability is introduced to govern the random occurrence of the SPDs. The main purpose of
the problem under consideration is to design a state estimator such that the dynamics of the estimation
error is globally asymptotically stable in the mean square. By using stochastic analysis and Lyapunov
stability theory, the desired state estimator is designed to be robust against LFUs and SPDs. Finally, a
simulation example is provided to show the effectiveness of the proposed state estimator design scheme.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades, neural networks including Hopfield neural
networks, bidirectional associative neural networks, cellular neural
networks, as well as Cohen–Grossberg neural networks have been
widely investigated. This is mainly due to the extensive applications
in various areas such as pattern recognition, affine invariant match-
ing, associative memory, model identification, and combinational
optimization. As is well known, these applications highly rely on the
dynamical behaviors of the neural networks. Therefore, the stability
analysis issue for neural networks has drawn a great deal of attention
and considerable research efforts have been made in this area. For
instance, by utilizing a combination of the comparison principle, the
theory of monotone flow and the monotone operator, some sufficient
conditions ensuring existence, uniqueness and global exponential
stability of the periodic solution have been derived in [1] for a class of
neural networks. In [20], a set of necessary and sufficient conditions
has been addressed for the global exponential stability of a class
of generic discrete-time recurrent neural networks by means of
the uncovered conditions. The globally asymptotic stability analysis
problem has been dealt with in [22] for a class of uncertain stochastic
Hopfield neural networks with discrete and distributed time-delays
in terms of Lyapunov theory.

It is well known that the state estimation is one of the founda-
tional problems in dynamics analysis for complex systems including
recurrent neural networks, complex networks, genetic regulatory
networks as well as general engineering systems. Over the past few
decades, a lot of effective approaches have been proposed in this
research area, see e.g. [3,5,6,12,21]. In particular, since modeling
errors and incomplete statistical information are often encountered
in real-time applications, robust state estimation schemes have
recently received considerable research attention in order to improve
the robustness. On the other hand, time delays are often unavoidably
encountered due to the finite speeds of signals switching and
transmission between neurons, which may cause undesirable
dynamic network behaviors such as oscillation and instability, see
e.g. [9,14,18,23]. So far, two types of time delays, namely discrete and
distributed time delays have gained considerable research attention.
For example, the state estimation problem has been investigated in
[14] for a class of discrete-time neural networks with Markovian
jumping parameters as well as mode-dependent mixed time-delays.
More recently, the robust H1 state estimation problem has been
studied in [23] for a general class of uncertain discrete-time
stochastic neural networks with probabilistic measurement delays.

Owing to unreliable measurements or network congestion,
packet dropouts (or missing measurements), viewed as an often
occurred network-induced problem, have drawn considerable
research attention during the past few years, see e.g.
[2,4,8,16,17,19]. For example, the distributed finite-horizon
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filtering problem has been proposed in [4] for a class of discrete
time-varying systems with randomly varying nonlinearities over
lossy sensor networks involving quantization errors and SPDs. In
[16], the optimal H2 filtering problem for linear systems with
multiple packet dropouts has been tackled. The robust H1 finite-
horizon filtering problem has been investigated in [17] for discrete
time-varying stochastic systems with norm-bounded uncertain-
ties, multiple randomly occurred sector-nonlinearities and SPDs. In
[19], the optimal full-order linear filter in the linear minimum
variance sense has been designed for discrete-time stochastic
linear systems with multiple packet dropouts. It is worth mention-
ing that the missing measurement problem in the neural networks
has not been fully investigated up to now. Therefore, we aim to
study the state estimation problem for neural networks with SPDs.

In addition, due to the modeling errors, parameter drifting or
fluctuation, uncertainties occur so frequently that may lead
to instability and poor performance of the neural networks.
Parameter uncertainties have been mainly categorized as norm-
bounded uncertainties and interval uncertainties, while the inter-
val type can be usually transformed into the norm-bounded type.
For these two types of uncertainties, the state estimation problem
and stability analysis have been investigated in [25,26] for neural
networks. It should be pointed out that a more general kind of
uncertainties, i.e., LFUs, have been proposed in [7,24] that include
the common norm-bounded uncertainties as a special case. In [10],
the state estimation problem has been first investigated for a class
of discrete-time neural networks with such LFUs and sensor
saturations. The stability property has been studied for generalized
static neural networks with LFUs in [11]. Nevertheless, very little
research effort has been made to account for delayed neural
networks with LFUs and SPDs. With hope to shorten such a gap,
in this paper, we are motivated to design an estimator for a class of
delayed neural networks subject to MTDs, LFUs and SPDs.

Summarizing the discussions made above, the main aim of this
paper is to specifically deal with the state estimation problem for a
class of discrete-time neural networks with LFUs, MTDs and SPDs.
The main contributions of this paper are threefold. (1) SPDs are
used to model a class of missing measurements in the context of
neural networks, whose occurrence is governed by a specified
Bernoulli distribution. (2) LFUs are utilized to describe the para-
meter uncertainties of the discrete-time neural networks with
MTDs. (3) The designed estimator is expected to be robust against
LFUs as well as SPDs, and ensure that the error dynamics is
globally asymptotically stable in the mean square. The rest of this
paper is outlined as follows. In Section 2, the discrete-time delayed
neural networks with LFUs and SPDs are introduced. Moreover, the
problem under consideration is formulated. In Section 3, by
employing the Lyapunov stability theory, some sufficient condi-
tions are established in the form of linear matrix inequalities
(LMIs) and the explicit expression of the estimator gain is given. A
simulation example is given in Section 4 to demonstrate the
effectiveness of the main results obtained.

Notation: The notation used here is fairly standard except
where otherwise stated. Nþ stands for the set of nonnegative
integers. Rn and Rn�m denote, respectively, the n dimensional
Euclidean space and the set of all n�m real matrices. For a vector
x¼ ðx1; x2;…; xnÞT ARn, jxj is the Euclidean norm. The notation
XZY(respectively, X4Y), where X and Y are real symmetric
matrices, means that X�Y is positive semi-definite (respectively,
positive definite). MT represents the transpose of the matrix
M. I denotes the identity matrix of compatible dimension.
If A is a matrix, λminðAÞ (respectively, λmaxðAÞ) stands for the
smallest (respectively, largest) eigenvalue of A. diagf⋯g stands
for a block-diagonal matrix. The n in a matrix is used to denote
term that is induced by symmetry. Moreover, let ðΩ;F ;ProbÞ be a
probability space, where Prob, the probability measure, has total

mass 1. Efxg stands for the expectation of the stochastic variable x
with respect to the given probability measure Prob. The symbol �
denotes the Kronecker product. Matrices, if they are not explicitly
specified, are assumed to have compatible dimensions.

2. Problem formulation and preliminaries

Consider a discrete-time n-neuro neural network with MTDs
described as follows:

xðkþ1Þ ¼ AðkÞxðkÞþB1ðkÞf ðxðkÞÞþB2ðkÞgðxðk�τðkÞÞÞ

þB3ðkÞ ∑
þ1

d ¼ 1
μdhðxðk�dÞÞþDðkÞxðkÞωðkÞ

~yðkÞ ¼ CðkÞxðkÞ
xðsÞ ¼ϕðsÞ; s¼ �τM ; �τMþ1;…; �1;0

8>>>>>><
>>>>>>:

ð1Þ

where xðkÞ ¼ ½x1ðkÞ; x2ðkÞ;…; xnðkÞ�T ARn is the state vector of the
neural network; ~yðkÞARm is the measurement output vector; the
nonlinear vector-valued functions f ðxðkÞÞ ¼ ½f 1ðx1ðkÞÞ; f 2ðx2 ðkÞÞ;…;

f nðxnðkÞÞ�T , gðxðkÞÞÞ ¼ ½g1ðx1ðkÞÞ; g2ðx2ðkÞÞ;…; gnðxnðkÞÞ�T and hðxðkÞÞ ¼
½h1ðx1ðkÞÞ;h2ðx2ðkÞÞ;…;hnðxnðkÞÞ�T are the neuron activation func-
tions; the positive integer τðkÞ describes the time-varying delay
satisfying 0oτmrτðkÞrτM , where τm and τM are known positive
integers representing the minimum and maximum delays respec-
tively; ϕðsÞ is a given initial condition sequence; ωðkÞ is a scalar
Wiener process (Brownian motion) on ðΩ;F ;ProbÞ with

EfωðkÞg ¼ 0; Efω2ðkÞg ¼ 1; EfωðiÞωðjÞg ¼ 0 ðia jÞ: ð2Þ
The constant μdZ0 satisfies the following convergence condi-

tion:

μ ¼ ∑
þ1

d ¼ 1
μd and ∑

þ1

d ¼ 1
dμdoþ1: ð3Þ

The matrices AðkÞ ¼ AþΔAðkÞ, B1ðkÞ ¼ B1þΔB1ðkÞ, B2ðkÞ ¼
B2þΔB2ðkÞ, B3ðkÞ ¼ B3þΔB3ðkÞ, CðkÞ ¼ CþΔCðkÞ and DðkÞ ¼Dþ
ΔDðkÞ are bounded matrices containing parameter uncertainties
ΔAðkÞ, ΔB1ðkÞ, ΔB2ðkÞ, ΔB3ðkÞ, ΔCðkÞ and ΔDðkÞ that satisfy the
following conditions:

ΔAðkÞ ΔB1ðkÞ ΔB2ðkÞ
ΔCðkÞ ΔDðkÞ ΔB3ðkÞ

" #
¼

M1

M2

" #
ΣðkÞðI�JΣðkÞÞ�1½N1 N2 N3�;

ð4Þ

J TJ o I; ΣT ðkÞΣðkÞr I; 8kANþ ð5Þ
where A¼ diagfa1; a2;…; ang and B1; B2; B3; C; D; H; Mi ði¼ 1;2Þ
and Ni ði¼ 1;2;3Þ are known constant matrices with appropriate
dimensions, and ΣðkÞ denotes the unknown matrix functions with
Lebesgue measurable elements.

Remark 1. In the neural network model (1), the conditions
(4) and (5) are referred to as the admissible conditions. Note that
this kind of parametric uncertainties means LFUs. As explained in
Section 1, the LFUs are more general than the common uncertain-
ties such as the norm-bounded type [22] and the interval type
[25]. Notice that when J ¼ 0, the linear fractional parametric
uncertainties reduce to the norm-bounded ones. Also, interval
uncertainties can be viewed as the special case of norm-bounded
ones. Therefore, it is more appropriate to use the linear fractional
form to describe the parameter uncertainties in practical neural
networks.

The nonlinear activation functions f ð�Þ, gð�Þ and hð�Þ are assumed
to be continuous and satisfy f ð0Þ ¼ 0; gð0Þ ¼ 0; hð0Þ ¼ 0 and the
following sector-bounded conditions, namely for 8x; yARn:

½f ðxÞ� f ðyÞ�U1ðx�yÞ�T ½f ðxÞ� f ðyÞ�U2ðx�yÞ�r0; ð6Þ
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