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a b s t r a c t

Clustering high-dimensional data has been a challenging problem in data mining and machining
learning. Spectral clustering via sparse representation has been proposed for clustering high-dimensional
data. A critical stepin spectral clustering is to effectively construct a weight matrix by assessing the
proximity between each pair of objects. While sparse representation has proved its effectiveness for
compressing high-dimensional signals, existing spectral clustering algorithms based on sparse repre-
sentation use individual sparse coefficients directly. However, exploiting complete sparse representation
vectors is expected to reflect more truthful similarity among data objects, since more contextual
information is being considered. The intuition is that sparse representation vectors corresponding to two
similar objects are expected to be similar, while those of two dissimilar objects are dissimilar. In
particular, we propose two weight matrix constructions for spectral clustering based on the similarity of
the sparse representation vectors. Experimental results on several real-world, high-dimensional datasets
demonstrate that spectral clustering based on the proposed weight matrices outperforms existing
spectral clustering algorithms, which use sparse coefficients directly.

Crown Copyright & 2014 Published by Elsevier B.V. All rights reserved.

1. Introduction

As an important task in data mining, cluster analysis aims at
partitioning data objects into several meaningful subsets, called
clusters, such that data objects are similar to those in the same
cluster and dissimilar to those in different clusters. With advances
in database technology and real-world need of informed decisions,
datasets to be analyzed are getting bigger-with many more data
records and attributes. Examples of high-dimensional datasets
include document data [1], user ratings data [2], multimedia data
[3], financial time series data [4], gene expression data [5], and so
on. Due to the “curse of dimensionality” [6], clustering high-
dimensional data has been a challenging task, and therefore,
attracts much attention in data mining and related research
domains [7].

Spectral clustering with sparse representation has been found
to be effective for clustering high-dimensional data. Spectral
clustering [8] is based on the spectral graph model, which is
equivalent to graph min-cut problem based on a graph structure
constructed from the object space. It is powerful and stable for

high-dimensional data clustering [9], and is considered superior to
traditional clustering algorithms for high-dimensional data clus-
tering due to its deterministic and polynomial-time solution [8].
Nonetheless, the effectiveness of spectral clustering mainly
depends on the input weights between each pair of data objects.
Thus, it is vital to construct a weight matrix that faithfully reflects
the similarity information among objects. Traditional simple
weight construction, such as ɛ-ball neighborhood, k-nearest neigh-
bors, inverse Euclidean distance [10,11] and Gaussian RBF [9], is
based on the Euclidean distance in the original data space, thus
not suitable for high-dimensional data due to the “curse of
dimensionality” in the original object space. However, sparse
representation, coming from compressed sensing [12], proves to
be an extremely powerful tool for acquiring, representing, and
compressing high-dimensional data by representing each object
approximately as a sparse linear combination of other objects.
Finding sparse representations transforms the object space into a
new sparse space.

Since sparse coefficients represent the contribution of each
object to the reconstruction of other objects, existing spectral
clustering methods based on sparse representation [13] use these
sparse coefficients directly to build the weight matrix. Using the
isolated coefficients individually warrants that only local informa-
tion is utilized. However, we assert that exploiting more contex-
tual information from the whole coefficient vectors promises
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better assessment of similarity among data objects. Intuitively, our
assumption is that the sparse representation vectors correspond-
ing to two similar objects should be similar, since they can be
reconstructed in a similar fashion using other data objects.

Therefore, in this paper, we present a study of exploiting
contextual information from sparse representation vectors to
construct weight matrices for spectral clustering of high-
dimensional data. More specifically, we firstly convert each high-
dimensional data object into a vector of sparse coefficients,
according to sparse representation theories. Then, the proximity
of any two data objects is assessed according to the similarity
between their sparse representation vectors. We propose two
different weight matrix construction approaches: one is based
on the consistency of directions, and the other is based on the
consistency of magnitude. We show differences and connections
between these two different approaches. Finally, spectral cluster-
ing is run on the weight matrices constructed. Extensive experi-
ments on several real-world, high-dimensional datasets show that
weights exploiting the contextual information from the sparse
representation vectors work better than existing solutions, which
only utilize individual sparse coefficients, by a variety of clustering
performance metrics.

The main contributions of this paper can be summarized as
follows. First of all, we recognize the importance of utilizing
contextual information for assessing the similarity between data
objects. More specifically, in the context of weight matrix con-
struction for spectral clustering, we find that the sparse represen-
tation vectors, compared with individual sparse coefficients,
contain more details and stronger evidence of similarity between
data objects. In addition, we propose two concrete ways to
implement the weight matrix construction utilizing sparse repre-
sentation vectors. Considering the direction of weight contribu-
tion, we examine the consistency of the signs for coefficients in the
sparse representation vectors. Considering the magnitude of
weight contribution, we evaluate the similarity of the sparse
representation vectors using the cosine measure. Finally, we
validate the usefulness of the proposed approaches with real-
world, high-dimensional datasets, showing that they are both
better than existing methods, and work better than each other
in different scenarios.

The rest of this paper is organized as follows. Related work and
some preliminary details are presented in Section 2. In Section 3,
we present the two different approaches to construct the
weight matrix using sparse representation vectors, and describe
the algorithms in detail. In Section 4, we present experiments
on several real-world, high-dimensional datasets and evaluate
the clustering performances. Finally, we conclude the work in
Section 5.

2. Related work and preliminaries

In this section, we first review a few typical techniques for
analyzing high-dimensional data. Then we focus on a brief review
of the formulation and derivation of sparse representations.
Finally, we focus on clustering methods to utilize sparse repre-
sentations for high-dimensional data.

2.1. Techniques for high-dimensional data

There are many techniques to deal with high-dimensional
signals in the literature. Popular techniques include nonnegative
matrix factorization, manifold learning, compressed sensing, and
combination in between.

Nonnegative matrix factorization (NMF) is a powerful dimen-
sionality reduction technique. It has been widely applied to image

processing and pattern recognition [14]. The basic idea is to
approximate a non-negative matrix by the product of two non-
negative, low-rank factor matrices. It was first proposed by Paatero
and Tapper [15], and has attracted much attention in the research
community since then. Research on NMF can be generally categor-
ized into three groups. The first group focuses on assessing the
consistency between the original matrix and the approximate
matrix, using Kullback–Leibler divergence [14], Euclidean distance
[16], earth mover0s distance [17], Manhattan distance [18], and so
on. The second group of research tries to find the optimal solution
efficiently and developing scalable NMF algorithms for large-scale
datasets. For example, fast Newton-type methods [19], online NMF
with robust stochastic approximation [20], robust near-separable
NMF using linear optimization [21], and large scale graph regular-
ized NMF [22]. Finally, the third group of research is to improve
the performance of NMF under constrains, or exploiting more
information from data. These techniques include sparseness con-
strained NMF [23], convex model for NMF using l1;1 regularization
[24], discriminant NMF [25], graph regularized NMF [26], manifold
regularized discriminative NMF [27], and constrained NMF incor-
porating the label information [28]. In particular, it has been
proved that an extended version of NMF is equivalent to kernel
K-means and Laplacian-based spectral clustering [29].

Manifold learning is another popular technique to process
high-dimensional data, assuming that the data distribution is
supported on a low-dimensional sub-manifold [30]. The key idea
is that the locality structure of a high-dimensional dataset should
be preserved in a low-dimensional space after dimension reduc-
tion, which is exploited as a regularization term [31–33] or
constraint [34,35] to be added to the original problem formulation.
It has been widely used in computer vision applications, such as
image classification [36,37], semi-supervised multiview distance
metric learning [38], human action recognition [39], and complex
object correspondence construction [40].

Besides the two approach reviewed above, sparse representa-
tion, originated from compressed sensing, has also attracted a
great deal of attention. It proves to be an extremely powerful tool
for acquiring, representing, and compressing high-dimensional
data. Due to its high relevance to the discussions in this paper,
we provide a more detailed overview of spares representation
theories in the following subsection.

2.2. A brief review of sparse representation

Given a sufficient high-dimensional training dataset X ¼ ðx1; x2;
…; xnÞARm�n, where xi ¼ ðxi1; xi2;…; ximÞT ARm is a column vector
representing the ith object. Research on manifold learning [30] has
shown that any test data point y lies on a lower-dimensional
manifold, which can be approximately represented by a linear
combination of the training data:

y¼ α1x1þ⋯þαixiþ⋯þαnxn ¼ XαARm; ð1Þ
where α¼ ðα1;α2;…;αnÞT represents the vector of coefficients that
need to be determined.

Typically, the number of training objects is much larger than
the number of attributes (i.e., n⪢m), then Eq. (1) is undetermined,
and its solution is not unique.

If we add the constraint that the best solution of α in Eq. (1)
should be as sparse as possible, which means that the number of
non-zero elements is minimized, then the solution becomes
unique. Such a sparse representation can be obtained by solving
the following optimization problem:

αn ¼ arg min
α

JαJ0 subject to y¼ Xα; ð2Þ

where J � J0 denotes the l0-norm of a vector, counting the number
of non-zero entries in the vector. Donoho [41] proves that if matrix
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