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a b s t r a c t

High-dimensional data often lie on relatively low-dimensional manifold, while the nonlinear geometry
of that manifold is often embedded in the similarities between the data points. Correlation as a similarity
measure is able to capture these similarity structures. In this paper, we present a new correlation-based
similarity discriminant analysis (CSDA) method for class separability problem. Firstly, a new formula
based on the trace of matrix is proposed for computing the correlation between data points. Then a
criterion maximizing the difference between within-class correlation and between-class correlation is
proposed to achieve maximum class separability. The optimization of the criterion function can be
transformed to an eigen-problem and an approximate closed-form solution can be obtained. Theoretical
analysis shows that CSDA can be interpreted in the framework of graph-based learning. Furthermore, we
also show how to extend CSDA to a nonlinear case through kernel-based mapping. Extensive
experiments on different data sets are reported to illustrate the effectiveness of the proposed method
in comparison with other competing methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Linear discriminant analysis (LDA) is a well-known method for
feature extraction and dimensionality reduction. It can extract a low-
dimensional feature representation of the data by minimizing
the within-class variance and maximizing the between-class var-
iance simultaneously. LDA has been widely applied to many modern
applications in the field of pattern recognition and computer vision,
such as face recognition [1–3] and text/document classification [4,5].

Euclidean distance is a metric which measures the dissimilar-
ity, rather than the similarity, between data points. Since LDA uses
Euclidean distance as a distance measure, it extracts the discrimi-
nant information hidden in widely separated data points, instead
of that hidden in nearby data points. As a result, LDA cannot deal
with the merging classes which are close together and far away
from other classes [6], as illustrated in Fig. 1(b). Hence, classical
LDA does not always find the optimal projection direction for
pattern classification [7]. In order to improve the performance of
LDA, Hamsici and Martinez [7] provided a algorithm to find that
d-dimensional discriminant subspace, where the Bayes error is
minimized for the C class problem with homoscedastic Gaussian
distributions. Lotlikar and Kothari [8] developed a fractional-step
LDA (FS-LDA) by introducing a weighting function. This is equiva-
lent to replacing the Euclidean distance in the LDA criterion with a

weighted Euclidean distance. In [9], Loog et al. [9] used the
Mahanalobis distance to replace the Euclidean distance in the
LDA criterion, which is called the approximate pairwise accuracy
criterion (aPAC). While FS-LDA and aPAC attempt to overcome the
drawback of Euclidean distance by using weighting functions, it is
difficult to determine what the best weighting function should be.

It is known that there is a low-dimensional nonlinear manifold
lying in the high-dimensional data [10–13], while the dimensionality
and nonlinear geometry of that manifold is often embedded in the
similarities between the data points [13]. An effective manifold
learning method must be able to find a low-dimensional representa-
tion of the data that best preserves the similarities between data
points and can effectively capture the intrinsic geometrical structure
of the data. In order to capture the latent manifold structure of data,
many feature extraction and dimensionality reduction methods
based on other distance measures were proposed in the past decade.
The isometric mapping (Isomap) method [14] substitutes geodesics
distance for Euclidean distance and then classical multidimensional
scaling (MDS) is used to find the optimum low-dimensional repre-
sentation. The Laplacian eigenmap (LE) [15] and locality preserving
projection (LPP) [16] methods try to solve a constrained optimization
problem in order to minimize a weighted sum of squared local
distances between neighbor data points. The distance measure
reflects the average of the Laplacian Beltrami operator on tangent
spaces over the manifold which can be considered as a weighted
Euclidean distance.

In an effective feature extraction method, a proper measure is
the key to capturing the latent intrinsic structures. In order to
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effectively capture the intrinsic manifold structure embedded in
the similarities between data points, correlation as a similarity
measure could be a suitable measure. In probability theory and
statistics, correlation indicates the strength and direction of a
linear relationship between two random variables which reveals
the nature of data represented by the classical geometric concept
of an “angle”. It is a scale-invariant association measure usually
used to calculate the similarity between two vectors. The correla-
tion between two vectors (column vectors) u and v is defined as

Corrðu; vÞ ¼ uTvffiffiffiffiffiffiffiffiffi
uTu

p ffiffiffiffiffiffiffiffi
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JvJ
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where the operator 〈�; �〉 means the inner product of two vectors.
The correlation corresponds to an angle θ such that
cos θ¼ Corrðu; vÞ. The larger the value of Corrðu;vÞ, the stronger
is the association between the two vectors u and v. In recent years,
some correlation-based feature extraction and dimensionality
reduction methods have been reported in the literature [17–21].
It should be pointed out that the correlation discriminant analysis
(CDA) [17] and the correlation embedding analysis (CEA) [18,22]
are two discriminant analysis methods in the correlation measure
space. However, they employ the gradient descent technique to
find a local optimum solution. Since the objective function is not
convex, the gradient descent technique cannot guarantee to get
the desired result. Usually, many runs are performed with random
initial values and the best result is selected. This results in long
processing time and high computation cost. In addition, the

selection of step size is a difficult task. Consequently, the CDA
and CEA methods have limited usage in practice.

In this paper, we present a new method for correlation-based
similarity discriminant analysis (CSDA). We first propose a new
correlation calculation formula to compute the within-class cor-
relation and the between-class correlation. Then the maximization
of the difference between within-class correlation and between-
class correlation is studied and a criterion is proposed. We show
that the optimization of the proposed criterion can be transformed
to an eigen-problem, from which an approximate closed-form
solution can be derived. Different from Euclidean distance, corre-
lation is a similarity measure, CSDA can effectively capture the
intrinsic manifold structure embedded in the similarities between
data points. As shown in Fig. 1(c), CSDA can find that 1D subspace
where the data is more separated than that obtained by classical
LDA based on Euclidean distance. Theoretical analysis shows that
CSDA can be interpreted in the framework of graph-based learn-
ing. Moreover, while it is difficult to extend the CDA and CEA
methods to kernel versions, the kernel variants of CSDA can be
easily derived.

The remainder of this paper is organized as follows. In Section 2,
some related works are briefly reviewed. The CSDA method is
proposed in Section 3, followed by a theoretical analysis in Section 4.
The kernel extension of CSDA is presented in Section 5. In Section 6,
experimental results are provided to illustrate the performance of
our method by comparing it with existing methods. Finally, conclu-
sions are drawn in Section 7.

Fig. 1. (a) shows four data classes drawn from the Gaussian distribution in R2, denoted by “x”, “o”, “n”, “þ”. (b) shows the LDA projection result in 1D subspace. (c) shows the
1D projection obtained by our proposed CSDA. (d) shows the 1D projection obtained by BLDA.
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