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a b s t r a c t

This paper presents a novel image classification framework (referred to as LR-LGSC) by leveraging the
low-rank matrix decomposition and Laplacian group sparse coding. First, motivated by the observation
that local features (such as SIFT) extracted from neighboring patches in an image usually contain
correlated (or common) items and specific (or noisy) items, we construct a structured dictionary based
on the low-rank and sparse components of local features. This dictionary has more powerful
representation capability. Then, we investigate group generation for group sparse coding and introduce
a Laplacian constraint to take into account the interrelation among groups, which can maintain low
reconstruction errors while prompting similar samples to have similar codes. Finally, linear SVM
classifier is used for the classification. The proposed method is tested on Caltech-101, UIUC-sports and
Scene 15 dataset, and achieves competitive or better results than the state-of-the-art methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Image classification is one of the fundamental problems in
computer vision. In recent years, the bag-of-words (BoW) model
[10] has been widely used to generate the feature representation of
image and been applied to image classification [11,29,6], image
retrieval [28], etc. The BoW quantizes local features into discrete
visual words and counts their occurrence frequencies in the entire
image. The resulting histogram is used as the image descriptor.
However, the BoW discards the spatial organization information of
local features, which severely limits the representation power.
To increase the robustness against geometric deformations, an
extension method called the spatial pyramid matching (SPM) [11]
has been proposed. The SPM partitions an image into several finer
segments in different scales, then computes the BoW histogram
within each segment and concatenates all the histograms to form the
image representation. This method shows promising performance
and has been widely used in image classification.

The BoW framework commonly consists of local feature extrac-
tion, dictionary generation, feature coding and feature pooling.
Among these steps, dictionary generation and feature coding are
very important for image representation (see [7] for a review).
Usually, the vector quantization (VQ) technique can code a local
feature as its nearest dictionary base generated by an unsuper-
vised clustering method, such as k-means. However, such hard
assignment method may cause severe information loss [2,24] due

to assigning a local feature to only one visual word, especially for
the local features located among the support area of multiple
visual words. To decrease the loss, soft constraint is introduced by
assigning a local feature to more than one word with different
weights. The weight vector indicates the contribution of each
visual word to reconstruct the local feature. However, for a given
local feature, it is not trivial to be determined that how many
visual words should be assigned and what their weights are.

Instead of using VQ, Yang et al. [29] use sparse coding technique to
determine the dictionary and the weights, and propose the method of
spatial pyramid matching using sparse coding (ScSPM), which achieves
the state-of-the-art performance for image classification. In sparse
coding, each sample is dealt separately. The mutual dependence among
samples is ignored. Hence, sparse coding might select quite different
words even for similar samples to favor sparsity. Yu et al. [32]
theoretically point out that under certain assumptions locality (i.e.,
nonzero coefficients are assigned to bases nearby to the encoded
sample) is required for nonlinear coding, which is helpful for sparse
codes to learn nonlinear functions in high dimensional space. To this
end, they propose local coordinate coding (LCC) to encourage locally
constrained sparse coding. Wang et al. [25] propose a locality-
constrained linear coding (LLC) method, which can be seen as a fast
implementation of LCC. They incorporate locality constraint instead of
sparsity constraint into the objective function to encourage similar
samples to have similar codes. While Gao et al. [4] improve the ScSPM
by introducing a Laplacian constraint. This Laplacian sparse coding
method (LScSPM) also preserves the consistence of sparse codes for
similar samples. Thiagarajan et al. [23] propose a dictionary learning
algorithm for local sparse coding, which takes into account the
neighborhood relation between a dictionary atom and the training
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vectors it represents. Interestingly, Bengio et al. [1] propose an extension
of sparse coding using group coding. They leverage mixed-norm
regularization to take into account the structure of bags of visual
descriptors present in groups (the “group” is a set of samples). In order
to obtain the sparsity in the level of image, they use the set of all local
features in an image as a group (even all local features in a given
category during dictionary learning). For group sparse coding, once a
codeword has been selected to help represent one of the samples in a
group, it is used to represent other samples in the same group as well.

In this work, we leverage group coding to capture the inter-
relation between the sample space and the coding space, thereby
achieving locally constrained feature coding. Although group
coding makes the descriptors in a group have similar response
and uniformity sparse pattern, its constraint is excessively rigid,
which often brings about large reconstruction error and informa-
tion loss and worsens the coding performance, especially when
the samples in a group are not homogenous. To overcome this
problem, we group local features by Normalized Cut clustering
[22] rather than using spatial neighborhood, which can ensure the
appearance consistencies of samples in a group. Moreover,
inspired by the LScSPM [4], we further take into account the
mutual dependence among groups by incorporating a Laplacian
constraint of matrix form into the objective function of group
coding, which can further promote the locality of feature coding.

On the aspect of dictionary, instead of using a common
dictionary shared by all classes, the structured dictionary (i.e.
collaborative representation) has been developed [34,26,30],
which considers the distinctiveness of different features in the
feature coding phase. The coding coefficients are more discrimi-
native, thereby benefiting the final classification accuracy. Wright
et al. [26] assume that the reconstruction error follows Gaussian or
Laplacian distribution and use the reconstruction error associated
with each class as the discriminative information for classification.
Yang et al. [30] cast sparse coding as a sparsity-constrained robust
regression problem, which seeks for the maximum likelihood
estimation solution of the sparse coding problem. These methods
are consistently used for face recognition. Since the samples for
image classification usually have much larger scales than ones for
face recognition, their practices of using training images as the
dictionary atoms and sparsely encoding the holistic image features
rather than local features are not suitable for our task.

In this work, we construct a structured dictionary for local
features by leveraging the low-rank decomposition technique. This
technique has been widely studied and successfully applied to
many applications, such as image processing, web data mining.
Zhang et al. [33] use it to decompose the ScSPM features of
training images within each class into a low-rank matrix and a
noise matrix, and then combine the both parts of all classes as the
dictionary to encode test images for classification. Different from
their approach, we observe that the local features extracted from
adjacent patches in an image often contain correlated items and
specific items. Therefore, we decompose the local features of each
training image into a low-rank part and a sparse part. Based on the
both parts, we learn a structured dictionary with feature-attribute
information for all classes, which is more robust and discrimina-
tive for classification application than the one learned by using the
raw local features because the former can more direct capture the
correlative and particular attributes of an image separately.

The contributions of this paper can be summarized as follows:

1. We learn a structured dictionary for local features based on the
low-rank and sparse components yielded by low-rank matrix
decomposition, which can capture the correlative and particu-
lar attributes of local features.

2. We examine group sparse coding and propose Laplacian group
sparse coding to take into account the dependence among

different groups. Incorporated with reasonable group genera-
tion, we simultaneously ensure the locality constraint and
small reconstruction error of feature coding.

The remainder of this paper is organized as follows: we review
the related work in Section 2, and introduce the proposed algorithm
in Section 3. Experimental results follow in Sections 4 and 5 give the
conclusions.

2. Background

2.1. Low-rank matrix decomposition

The low-rank matrix recovery problem has been widely studied
for the past few years. Given a matrix M, the aim of this technique
is recovering a low-rank component L and a sparse component S,
that is

M¼ LþS ð1Þ
This decomposition problem can be solved by

min
L;S

rankðLÞþγ:S:0

s:t: M¼ LþS ð2Þ
where the l0-norm counts the number of nonzero entries in the
sparse matrix and γ40 is a parameter that trades off the rank
term and the sparse term. However, this problem is non-convex
and NP hard. Fortunately, Candes et al. [3] point that under certain
conditions the problem can be transformed to

min
L;S

:L:
n
þγ:S:1

s:t: M¼ LþS ð3Þ
where the : � :

n
is the nuclear norm defined as the sum of singular

values. In this paper, we use inexact version of the augmented
Lagrange multiplier (ALM) method proposed by Lin et al. [13] to
solve the problem.

2.2. Sparse coding and group sparse coding

Based on the findings that natural images can be generally
coded by structural primitives (e.g., edges and line segments) that
are qualitatively similar in form to simple cell receptive fields
[19,3], sparse coding selects the least possible basis from an over-
complete dictionary to represent the signal of images under
certain reconstruction error constraints. Intuitively, the sparsity
of the coding coefficients can be measured by l0 -norm, which
counts the number of nonzero entries in a vector or matrix. Since
l0-norm regularization is an NP-hard problem, l1-norm regulariza-
tion is widely employed in sparse coding, as it is shown that
l0-norm and l1-norm regularization are equivalent under certain
conditions [13].

Let Y¼ ½y1; y2;…; yk�ARm�k be a set of m-dimensional samples.
Let D¼ ½d1;d2;…;dn�ARm�n be the dictionary with n entries. The
corresponding sparse codes X¼ ½x1; x2;…; xk�ARn�k over diction-
ary D can be computed by solving the following optimization
objective:

min
X

∑
k

i ¼ 1
:yi�Dxi:

2þλ:xi:1

¼min
x

∑
k

i ¼ 1
xTi D

TDxi�2yTi Dxiþλ:xi:1þyTi y ð4Þ

where the parameter λ balances reconstruction quality term and
sparse term. It is well known that the regularization l1 induces
sparsity and makes the problem tractable [18].
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