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In this paper, the problem of the adaptive neural control is considered for a class of pure-feedback
stochastic nonlinear systems. Based on the radial basis function (RBF) neural networks’ universal
approximation property, an adaptive neural controller is developed via backstepping technique. It is
shown that the proposed controller can guarantee that all the signals in the closed-loop system are
bounded in the sense of mean quartic value. Compared with the existing results on adaptive control of
stochastic pure-feedback nonlinear systems, the main novelty of this note is that a systematic design
procedure is presented for a class of pure-feedback stochastic nonlinear systems with a more general
form of the diffusion term. Simulation results are presented to demonstrate the effectiveness of the
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1. Introduction

During the past decades, many control methods have been
developed for control of nonlinear systems, such as adaptive
control [1], backstepping control [2] and fault tolerant control
[3,4]. Specifically, adaptive backstepping technique provides a
systematic design approach for nonlinear strict-feedback systems
without satisfying matching condition. So far, some interesting
results on backstepping-based adaptive control of strict-feedback
systems have been obtained in [2,5-7] for deterministic nonlinear
systems and in [8-15] for stochastic cases. However, these control
schemes are only suitable for those nonlinear systems with the
nonlinear dynamic models known exactly or with the unknown
parameters appearing linearly with respect to known nonlinear
functions [19]. When the system nonlinear functions are not
available, these classical adaptive backstepping controllers cannot
be applied. Neural networks and fuzzy logic systems are mostly
used as approximation models for the unknown nonlinearities
due to their inherent approximation capabilities. With the help of
neural networks (or fuzzy logical systems) approximation, it is not
necessary to spend much effort on system modeling which might
be very difficult in some cases. So, the control design methods by
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combining adaptive backstepping with neural networks and fuzzy
logical systems have been found to be a particularly useful tool for
the control of nonlinear strict-feedback systems. The advantages of
adaptive neural backstepping control approach lie in the fact that a
priori knowledge of the system nonlinear functions is not neces-
sary, and the matching condition may be unsatisfied. Generally,
adaptive neural (or fuzzy) backstepping control provides a sys-
tematic methodology for the tracking or regulation problems of
nonlinear systems with unknown functions. Until now, many
valuable research results on the strict-feedback nonlinear systems
have been obtained, for example, see [16-40]and the reference
therein. The works in [17-30] developed adaptive neural or fuzzy
control approaches for the deterministic nonlinear systems with
or without time delays. Correspondingly, in [31-40], the problem
of approximation-based adaptive backstepping control was con-
sidered for uncertain stochastic nonlinear strict-feedback systems.
In the aforementioned papers [16-40], however, the obtained
results required that the unknown nonlinear functions were in
the affine forms, i.e., the systems were characterized by input
appearing linearly in the system state equation.

The nonaffine pure-feedback systems, which represent a more
general class of lower-triangular systems, have no affine appear-
ance of the variables to be utilized as virtual control inputs. This
makes the control of pure-feedback nonlinear systems difficult
and challenging. In addition, many practical systems are of non-
affine structure, such as mechanical systems [41], and biochemical
processes [2]. Therefore, the investigation on the control design of
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nonaffine pure-feedback nonlinear systems is a meaningful issue
and has received considerable attention in the control community
in recent years [42-47]. In [42,43], by combining the backstepping
methodology with adaptive neural design, several special cases of
pure-feedback systems where the last one or two equations are
assumed to be in affine form were investigated. Furthermore,
some elegant control approaches were developed for completely
pure-feedback systems [44] and other cases, such as pure-feed-
back systems with time-delay [45], disturbances [46] and dead-
zone [47]. More recently, the study on stability analysis and
control design of stochastic pure-feedback nonlinear systems has
attracted increasing attention. In [48], an adaptive fuzzy control
scheme was proposed for pure-feedback stochastic nonlinear
systems. Nevertheless, the work in [48] requires that the first
n—1 subsystems have to be in affine form whereas the last
differential equation is in non-affine form only. Furthermore, in
[49], the problem of adaptive neural tracking control was con-
sidered for a class of completely pure-feedback stochastic non-
linear systems where the number of adaption laws is the order of
the considered systems. In [51], an adaptive fuzzy output-feedback
control scheme was developed for a class of pure-feedback
stochastic nonlinear systems in which the number of adaptive
law depends on the order of the original system and the weight
vector dimensions of fuzzy logical systems. If the order of the
considered systems or the weight vector dimensions increases, the
number of adaptive parameters will increase correspondingly, and
as a result, the online learning time may be very long. In addition,
for the ease of the controller design, the diffusion terms y;(-) in the
existing results [48-51] are assumed to be the function of the
previous state variables X; =[x1, X2, ..., x;]". Apparently, if the diffu-
sion terms in the considered stochastic pure-feedback systems are
in a more general form, the aforementioned control schemes may
be invalid.

Motivated by the above observation, an adaptive neural control
approach is developed for a class of stochastic pure-feedback non-
linear systems based on the backstepping technique. It is shown that
the proposed controller can ensure boundedness of all the signals
in the closed-loop system in the sense of mean quartic value. The
main contribution of this study is that a backstepping-based adaptive
neural control methodology is systematically developed for a class of
pure-feedback stochastic nonlinear systems in a more general form.
In addition, by estimating the maximum value of the norm of weight
vector of neural networks rather than the weight vector elements
themselves, only one adaptive parameter needs to be estimated
online. As a result, the computational burden is alleviated signifi-
cantly, which could render this control design more suitable for
practical applications.

The remainder of this paper is organized as follows. The
problem formulation and preliminaries are given in Section 2.
An adaptive neural control scheme is presented in Section 3. The
simulation examples are given in Section 4, and followed by
Section 5 which concludes the work.

2. Problem formulation and preliminaries

In this paper, consider a class of stochastic pure-feedback non-
linear system as follows:
dx; =fiRi, X1 1) dt+ypT X xi 1) dw, 1<i<n—1,
dxy =f,Xn, u) dt +yT(X,) dw, M
y=X1,
where X =[x1,X2,...,x:]T €R", ueR and y R are the state vector,

system input, and system output, respectively, x; =[x, X2, uxi]T
eR', w is a r-dimensional standard Brownian motion defined on

the complete probability space (£2,F,P) with £ being a sample
space, F being a o-field, {F:};.o being a filtration, and P being
a probability measure. The drifting terms f;(-): R*' >R and the
diffusion terms y;(-) : R+ LR, (i=1,2,...,n) are unknown smooth
nonlinear functions.

Remark 1. It is noted that the pure-feedback nonlinear systems
investigated in [42-47] do not contain stochastic disturbance, and
the diffusion terms w;(-) in [49,48,51] are assumed to be the
function of the previous state variables X; = [x1,X2, ..., X;]". Appar-
ently, the system considered in (1) is in a more general form.

The objective of this note is to design an adaptive neural
controller u for the system (1) under some assumptions such that
all the signals in the closed-loop remain bounded in the sense of
mean quartic value.

According to mean the value theorem [52], the following
equations can be obtained

[i®ixio) =fi®u X, )+, X —x0, ), (1<i<n-1),
fa@n. ) =foXn, u")+g, —uo), )

where smooth function f;(-) is explicitly analyzed between f;(x;,
Xip1) and fiXi X0, 1), 8= Xu) = (of i(Xi, Xi1)/0Xi s 1)lx,, — 0
i=1,2,..,0,X 01 =W Xy, = X1 +(T—ppx?, ;.0 < p; < 1. Further-
more, by substituting (2) into (1), and choosing x?, ; =0,u® =0, it
follows

dx; = (f(Xi, 0)+8, Xip1) dt+y] Xip 1) dw, 1<i<n-1,

dxn = (f(Xn, 0)+g,, 1) dt-+yl &) dw, 3
y=X.

To facilitate the control design in Section 3, the following assump-
tions are required.

Assumption 1 (Chen et al. [25]). The signs of g, ,i=1,2,...,n, are
known, and there exist unknown constants b,, and by, such that,
for1<i<n

0<bn<|g,|<by<oco, VXX 1)eR xR 4)

Assumption 2. There exist strict increasing smooth functions
pi(): R" -=R* with p;(0)=0 such that fori=1,2,...,n

Iy, &)l < py(I1%; 1)

Remark 2. The increasing property of p;(-) means that if a;, > 0, for
k=1,2,...n, then p;(X} _ a1 < X} _,pi(nay). Note that p(s) is a
smooth function with p;(0) =0, so there exists a smooth function
n;(s) such that p;(s) = sn;(s), which results in

Pf( 2 ak) < ¥ nagn(na). 5)
Pt K=

To introduce some useful definitions and lemmas, we first con-
sider the following stochastic system:

dx =f(x,t)dt+h(x,t)dw, VxeR" (6)

where xeR" is the state of the system, w is a r-dimensional
independent standard Brownian motion defined on the complete
probability space (£2,F,P), and f(-), h(-) are locally Lipschitz func-
tions in x and satisfy f(0) =g(0) =0.

Definition 1. For any given V(x,t)e C>!, associated with the
stochastic differential equation (6) define the differential operator
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