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a b s t r a c t

The paper presents the resolution-invariant image representation (R IIR) framework. It applies sparse-

coding with multi-resolution codebook to learn resolution-invariant sparse representations of local

patches. An input image can be reconstructed to higher resolution at not only discrete integer scales, as

that in many existing super-resolution works, but also continuous scales, which functions similar to

2-D image interpolation. The R IIR framework includes the methods of building a multi-resolution

bases set from training images, learning the optimal sparse resolution-invariant representation of an

image, and reconstructing the missing high-frequency information at continuous resolution level. Both

theoretical and experimental validations of the resolution invariance property are presented in the

paper. Objective comparison and subjective evaluation show that the R IIR framework based image

resolution enhancement method outperforms existing methods in various aspects.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Most digital imaging devices produce a rectangular grid of
pixels to represent the photographic visual data. This is called the
raster image. The human perceptual clarity of a raster image is
decided by its spatial resolution which measures how closely the
grid can be resolved. Raster images with higher pixel density are
desirable in many applications, such as high resolution (HR)
medical images for cancer diagnosis, high quality video confer-
ence, HD television, Blu-ray movies, etc. There is an increasing
demand to acquire HR raster images from low resolution (LR)
inputs such as images taken by cell phone cameras, or converting
existing standard definition footage into high definition image/
video materials. However, raster images are resolution depen-
dent, and thus cannot scale to arbitrary resolution without loss of
apparent quality.

Another generally used image representations is the vector

image. It represents the visual data using geometrical primitives
such as points, lines, curves, and shapes or polygon. The vector
image is totally scalable, which largely contrasts the deficiency of
raster representation. Hence the idea of vectorizing raster image for
resolution enhancement has long been studied. Recently, Ramanar-
ayanan et al. [1] added the vectorized region boundaries to the
original raster images to improve sharpness in scaled results;
Dai et al. [2] represented the local image patches using the back-
ground/foreground descriptors and reconstructed the sharp dis-
continuity between the two; to allow efficient vector representation

for multi-colored region with smooth transitions, gradient mesh
technique has also been attempted [3]. In addition, commercial
softwares such as [4] are already available. However, vector-based
techniques are limited in the visual complexity and robustness. For
real photographic images with fine texture or smooth shading,
these approaches tend to produce over-segmented vector repre-
sentations using a large number of irregular regions with flat colors.
To illustrate, Fig. 1(a) and (b) is vectorized and grown up to �3
scale using methods in [2,4]. The discontinuity artifacts in region
boundaries can be easily observed, and the over-smoothed texture
regions make the scaled image watercolor like.

Alternatively, researchers have proposed to vectorize raster
image with the aids of a bases set to achieve higher modeling
capacity than simple geometrical primitives. For example, in
image/video compression domain, pre-fixed bases, such as the
DCT/DWT bases adopted in JPEG/JPEG-2000 standard, and the
anisotropic bases such as countourlets [5], have already been
explicitly proposed to capture different 2-D edge/texture
patterns, because they lead to sparse representation which is
very preferable for compression [6]. In addition to pre-fixed bases,
adaptive mixture model representations were also reported. For
example, the Bandelets model [7] partitions an image into
squared regions according to local geometric flows, and repre-
sents each region by warped wavelet bases; the primal sketch
model [8] detects the high entropy regions in the image through a
sketching pursuit process, and encodes them with multiple
Markov random fields. These adaptive representations capture
the stochastic image generating process, therefore they are suited
for image parsing, recognition and synthesis.

In the large body of example-based image resolution
enhancement literature, or called ‘‘Single Frame Super-Resolution
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(SR in short)’’, researchers utilize the co-occurrence prior between
LR and HR representations in an over-completed bases set to
‘‘infer’’ the HR image. For example, Freeman et al. [9] represented
each local region in the LR image using one example LR patch, and
applied the co-occurrence prior and global smoothness depen-
dence through a parametric Markov Network to estimate the HR
image representation. Qiang et al. [10] adopted Conditional
Random Field to infer both the missing HR patches and the
point-spread-function parameters. Chang et al. [11] utilized
locally linear embedding (LLE) to learn the optimal combination
weights of multiple LR base elements to estimate the optimal HR
representations. In our previous work [12] and in Yang et al.’s
work [13], the sparse-coding model is applied to obtain the
optimal reconstruction weight using the whole bases set. In
addition to example patches, representing images in transferred
domain, such as edge profile [14], wavelet coefficients [15], image
contourlet [16], etc., has also been examined.

However, although the example-based SR methods signifi-
cantly improve image quality over 2-D image interpolation, the
bases used by existing approaches have only single scale capacity.
E.g., the base used for �2 up-sizing cannot be used for �3
up-sizing. Hence these existing methods are not capable for
multi-scale image SR. To cope with these limitations, this paper
presents a novel method that uses example bases set yet is
capable for multi-scale and even continuous-scale image resolu-
tion enhancement. The contribution includes:

� The paper introduces a novel resolution-invariant image
representation (R IIR) framework that models the inter-depen-
dency between example base sets of different scales. The paper
shows that, an image can be encoded into a resolution-
invariant representation, such that by applying different bases
set, the LR input can be enhanced to multiple HRs. This
capability has obviously the importance in many novel resolu-
tion enhancement applications that existing SR method cannot
handel well.
� The key components of the R IIR framework include construct-

ing a R IIR bases set and coding the image into R IIR. In
addition to our previous work [12,17], this paper introduces
several coding schemes that all possess the resolution-invar-
iant property, as illustrated in Fig. 1(f)–(h). A comprehensive
evaluation was conducted to evaluate the advantages of
different coding scheme over different aspects.
� The paper further extends the proposed R IIR framework to

support continuous scale image SR. A new base for any
arbitrary resolution level can be synthesized using existing
R IIR set on the fly. In this way the input image can be
enhanced to continuous scales using only matrix–vector mul-
tiplication, which can be implemented very efficiently by
modern computers.

The rest of the paper is organized as follows: Section 2
introduces the image decomposition model and generalizes the
invariant property between different image frequency layers.
Section 3 introduces our key R IIR framework based on the
invariant property between base sets of different scales. Section
4 applies the R IIR framework for continuous image SR. Section 5
lists the experimental results, and Section 6 summarizes the
proposed methods and discusses future works.

2. Resolution invariant property between frequency layers

2.1. Image model

Example-based SR approaches assume that [9] an HR image
I¼ Ih

þIm
þIl consists of a high frequency layer (denoted as Ih),

a middle frequency layer (Im), and a low frequency layer (Il).
The down-graded LR image I ¼ Im

þIl results from discarding
the high frequency components from the original HR version.
Hence the image super-resolving process strives to estimate the
missing high frequency layer Ih by maximizing PrðIh9Im,Il

Þ for any
LR input. In addition, since the high frequency layer Ih is
independent of Il [9], it is only required to maximize PrðIh9Im

Þ,
which greatly reduces the variability to be stored in the
example set.

A typical example-based SR process works as follows: Given an
HR image I and the corresponding LR image I0 , I0 is interpolated to
the same size as I and denoted as I. The missing high frequency
layer Ih can be obtained by Ih

¼ I�I. A Gaussian filter Gl is properly
defined to obtain the middle frequency layer Im by Im

¼ I�I � Gl.
Now from Ih and Im, a patch pair set S ¼ fSm,Sh

g can be extracted
as the example bases set. Sm ¼ fpm

i g
N
i ¼ 1 and Sh ¼ fph

i g
N
i ¼ 1 repre-

sent the middle frequency and the high frequency bases respec-
tively. Each element pair in fpm

i ,ph
i g is the column expansion of a

square image patch from the middle frequency layer Im and the
corresponding high frequency layer Ih. The dimensions of pm

i and
ph

i are Dm
� 1 and Dh

� 1 respectively, and often DmaDh. Now
from a given LR input, the middle frequency patches can be
extracted accordingly and denoted as fym

j g. The missing high
frequency components fyh

j g are estimated based on the
co-occurrence patterns stored in S. The following subsections
review three different models for the estimation process.

2.2. Nearest neighbor

Assuming that image patches follow Gaussian distribution, i.e.,
PrðymÞ �N ðlm,R2

Þ, and Prðyh9ymÞ �N ðlh,R2
Þ, it can be easily

verified that, for any observed patch ym
j from the LR input, the

maximum likelihood (ML) estimation of lm
j minimizes the

Fig. 1. Image SR quality by our R IIR framework. Top: comparison to image vectorization. Bottom: comparison to different example-based methods.
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