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a b s t r a c t

Stability and periodicity of neural networks is important behavior in biological and cognitive activities.

In order to better simulate a biological genuine model, a special kind of discrete Hopfield neural

networks (SDHNNs) in which every neuron has only one input is considered. By applying permutation

theory and mathematical induction, we prove that the SDHNN always converges to a stable state or a

limit cycle. The SDHNN is extended to the discrete Hopfield neural networks with column arbitrary-

magnitude-dominant weight matrix (DHNNCAMDWM) in which there only exits a magnitude-

dominant element in every column. Some important results, especially the periodic stability of the

DHNNCAMDWM, are obtained. And the XOR problem is successfully solved by the results.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Hopfield neural networks, as a signpost that is the second
development of neural networks, have been extensively studied
in past years because of their wide applicability in solving
constraint satisfaction, optimization, associative memories, pat-
tern classification, image processing, etc. These applications
heavily depend on the dynamical behavior of the networks. So,
the analysis of dynamical behaviors is very important in the
design and application of Hopfield neural networks. Previous
works mainly consider that the dominant effect of every neuron
is the connected weight from itself to itself [11–16]. And in most
references [1–16,36,37] the stability and periodicity of discrete
Hopfield neural networks (DHNNs) is proved with the Lipschitz
function. However, it is difficult to construct the Lipschitz func-
tion and the main influence of a neuron is not itself but others in
most theories and practices. Therefore, in this paper we consider
the stability and periodicity of SDHNN and DHNNCAMDWM using
the permutation theory and mathematical induction (maybe it

provides a new method for the provement of the stability and
periodicity of DHNN).

With a common assumption that the weight matrix is sym-
metric, b-symmetric and anti-symmetric, scholars have done
intensive studies about the Hopfield-type network. In most cases,
the weight matrixes of neural networks are asymmetric, so to
have strict restriction on symmetry is unpractical. In recent years,
some studies about Hopfield-type network in which the weight
matrix is asymmetric, mainly have two ways [1–21]. Firstly, some
researchers attempt to look for some special asymmetric con-
nected matrix, for examples: anti-symmetric matrix [1–3], semi-
definiteness matrix [4], diagonal matrix [5–8], nonnegative
matrix [9–16], and M-matrix [22,23]. Secondly, some researchers
make efforts to analyze the degree distribution of the connection
topology, for examples: poisson [17,18], small-world [19,20],
scale-free [21]. We consider the former situation. The studies of
the dominant weight matrix are as follow. Xu et al. [12–14] prove
that any Hopfield networks will converge to a stable state when
operating in the serial mode, if the connected matrix is main
diagonally dominant matrix (MDDM); and the convergence
of Hopfield networks in the parallel mode is also verified
under corresponding nonnegative definiteness conditions. As the
improvement of this study, Lee extends the serial (or fully
parallel) updating mode to partial simultaneous updating mode
[15]. And in the study of Ma et al., they add an increment matrix,
row or column diagonally dominant, to the weight matrix [16].
Liang et al. [8] extend main diagonally dominant matrix to the
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quasi-diagonally row-sum dominant matrix (QDRDM) or quasi-
diagonally column-sum dominant matrix (QDCDM).

From above we know that the dominant effect on every
neuron is the connection weight from itself to itself. Applying
MDDM, QDRDM and QDCDM, they mainly analyze the stability of
Hopfield neural networks whose connected weight matrixes are
main-diagonal dominant in these literatures [11–16]. However,
the restriction is not suitable for the neuron on which the
dominant effect is from any other. In this paper we consider
DHNN, where each neuron only has one dominant-input neuron.

In addition, periodic oscillation in recurrent neural networks is an
interesting behavior since many biological and cognitive activities
require repetition [34]. Recently, many results have accumulated
concerning the periodic oscillatory behavior of neural networks in the
literature [24–34]. The periodic parameters of neural networks are
required in the literature [24–32,34]. And there exists an important
assumption that the weight matrix is a MDDM in [33]. However, the
periodic behavior caused by the structure of DHNN has received very
little research attention, despite of its practical importance. Simulta-
neously, scholars think that the feedback loops exist in networks and
play a key role in network dynamics [17,18]. Therefore, it is important
to study the periodicity of DHNNCAMDWM.

On other hand, in most references [1–16,36,37] stability
analysis of these Hopfield neural networks mainly is based on
the decrease of energy function, which typically requires that the
weight matrix is nonnegative or negative definite. As you can s
ee in example of Section 4, however, many column arbitrary-
magnitude-dominant weight matrixs (CAMDWMs) are neither
nonnegative definite nor negative definite. The stability of
DHNNCAMDWM is obtained by researching a special kind of
discrete Hopfield neural networks. Moreover, it is unnecessary to
construct the Lipschitz function. So, in this paper the Lipschitz
function method is more conservative.

Motivated by the previous discussion, the aims of this paper
are to study the stability and periodicity of DHNNCAMDWM by
permutation theory and mathematical induction. The method of
this paper is as following. According to permutation theory,
firstly, SDHNN P is divided into some smaller networks. Secondly,
using all states of one neuron of SDHNN, which are divided into
eight ways, the stability and periodicity of smaller networks is
studied. Thirdly, based on those smaller networks the stability
and periodicity of SDHNN is obtained by mathematical induction.
Fourthly, this model is extended to DHNNCAMDWM. And the
results are confirmed by solving the XOR problem.

This paper is organized as follows. In Section 2, we
give some basic definitions. The stability and periodicity of the
SDHNN are analyzed in Section 3. We study the stability of the
DHNNCAMDWM in Section 4. An application is given in Section 5.
The last section offers the conclusion of this paper.

2. Preliminaries

A discrete Hopfield neural networks N¼ ðW ,yÞ consists of n binary
valued nodes. We index the nodes by H¼ f1;2, . . . ,ng, and choose
f1,�1g as their possible states. Suppose that the state of neuron i at
times t is xi(t). Then the state of n neurons can be represented by an
n-dimensional vector XðtÞ ¼ ðx1ðtÞ,x2ðtÞ, . . . ,xnðtÞ,ÞAf1,�1gn. Let
xjðtþ1Þ be the state of neuron j at time tþ1, then xjðtþ1Þ and
xiðtÞði¼ 1;2, . . . ,nÞ has the relation

xjðtþ1Þ ¼ sgn
Xn

i ¼ 1

wijxiðtÞ�yj

 !
¼

1,
Xn

i ¼ 1

wijxiðtÞ�yjZ0

�1,
Xn

i ¼ 1

wijxiðtÞ�yjo0

8>>>>><>>>>>:
ð1Þ

where y¼ ðy1,y2, . . . ,yn,ÞT ARn is an n-dimensional vector with yj

representing the threshold value of neuron j and W ¼ ðwijÞn�n is the
connected matrix of the network with wij representing the linking
strength (or weight) from neuron i to neuron j.

The network is updated asynchronously, that is, only one
neuron i is selected at time tþ1. The updating rule is

xjðtþ1Þ ¼
sgn

Xn

i ¼ 1

wijxiðtÞ�yj

 !
, if j¼ i

xjðtÞ, if ja i

8>><>>: ð2Þ

The network is updated synchronously, that is, every neuron j is
selected at time tþ1. The updating rule is

xjðtþ1Þ ¼ sgn
Xn

i ¼ 1

wijxiðtÞ�yj

 !
, j¼ 1;2, . . . ,n ð3Þ

In order to facilitate description, we denote that neuron set H

is f1;2, . . . ,ng and f(j) is a mapping from H to itself. The following
introduces the definition of SDHNN in which every neuron has
only one input.

Definition 1. Let P¼ fW ,yg be a SDHNN, where W that every
column has only one arbitrary number entry (others are zeros) is
denoted by

wzjj ¼
arbitrary number, if zj ¼ f ðjÞ

0, otherwise

(
ð4Þ

We know that a permutation of a set H is defined as a bijection
from H to itself. According to the definition 1, f is not a bijection,
so an extended permutation is defined as following:

Definition 2. An extended permutation d of a set H is defined as a
mapping f from H to itself and denoted by

d¼
1 2 � � � j � � � n

z1 z2 � � � zj � � � zn

 !
1r jrn

zj ¼ f ðjÞ
ð5Þ

And the corresponding cycles and directed links are written as

d¼ ðH1Þ, . . . ,ðHbÞ, . . . ,ðHLÞ ¼ ðH11H12Þ, . . . ,ðHb1Hb2Þ, . . . ,ðHL1HL2Þ

ð6Þ

where Hb ¼Hb1Hb2ð1rbrLÞ, Hb1 consists of the neurons of a
directed cycle and Hb2ð1rbrLÞ consists of the neurons of some
directed links, which start from the neurons of Hb1.

Remark 1. When f is a bijection, d is a permutation. If we take out
all links Hb2ð1rbrLÞ, d0 ¼ ðH11Þ, . . . ,ðHb1Þ, . . . ,ðHL1Þ is a permuta-
tion. Understanding to Definition 1 and Definition 2, please see
Example 1.

The corresponding entry wzjj represents the connected weight
from the neuron zj to the neuron j. And the order nb of Hb1Hb2 is
the number of the neuron of the cycle Hb1.

In DHNN, each neuron only has one dominant-input neuron.
That means the connected weight matrix of networks is a column
arbitrary-dominant matrix in which every column only has one
dominant element. Based on this, we define DHNN with column
arbitrary-magnitude-dominant weight matrix (DHNNCAMDWM)
as following:

Definition 3. Let P¼ fW ,yg be a DHNNCAMDWM, where W

is a column arbitrary-magnitude-dominant weight matrix
(CAMDWM). In every column of the matrix, the magnitude of
any one entry in that column is larger than or equal to the sum of
the magnitudes of all the other entries in that column. It is
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