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a b s t r a c t

Electronic devices modeling the behavior of neural systems interacting with a natural environment are

mainly composed of sensory devices and coupled spiking neural networks. In this context, the

possibility to apply theoretical predictions on populations of analog VLSI neurons is aimed in view of

their quantitative control. The purpose of this work is to state robust and scalable methods to obtain a

quantitative match between experiments and theory for the spiking activity of non-interacting analog

VLSI neurons. The decoupled neural dynamics is the starting point for the quantitative description of

network coupled conditions. An empirical measure of the capacity, by which the VLSI neurons integrate

the currents, an automatic calibration of the injected currents and few basic formulas allow the

complete control of the neural dynamics.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Electronic devices trying to model the behavior of a neural
system are often termed ‘‘neuromorphic’’, after Carver Mead
pioneered their development in the early 1990s [1]. In order to
propose precise methods for achieving predictions on the sto-
chastic dynamic behavior of a class of neuromorphic chips, the
activity of a decoupled analog VLSI neural network of a small size
was analyzed.

Though continuously evolving, the landscape of neural proces-
sing models (for both biological and artificial neural populations)
has various landmarks based on the Mean Field approach (see for
example [3–8]). The theory employed for the chip control is based
on the Mean Field approach and the depolarization diffusion

approximation presented in [8,3].
In neuromorphic modular systems, Integrate and Fire neurons

directly receive stochastic input currents from sensory devices or
from other recurrent spiking chips. In such systems, like in
biology, the afferent currents, resulting from input Poisson pulses,
are widely considered to be well approximated by a Gaussian
distribution [2]. The main difference with respect to the previous
papers [9–11] consists in the employment of an external Gaussian
stimulation. Whereas [10] exploits Gaussian currents only to
investigate the frequency response of a VLSI neuron, this work
also studies the depolarization probability density.

Moreover it is shown that an empirical measure of the
capacity, by which the neurons integrate the currents, captures
the effects of the irregularity of the circuits and an automatic
calibration procedure of the external Gaussian and constant
currents is necessary to limit the irregularity among the spiking
rates of the VLSI decoupled neural population.

2. VLSI network and experimental environment

This section presents the main features of the neural chip (for
details see [10]) and of the experimental environment. The VLSI
recurrent network is implemented in a 3.16�3.16 mm2 standard
0:6 mm, 3 metals, CMOS chip. It contains 21 integrate-and-fire
neurons.

External stimulation is sent to the chip by using a series of
current values: these values are sequentially written on DACs,
which are mapped with the neurons and act as current injectors.
The spike event times are recorded by an electronic board
communicating with the PCI Bus of a PC [12,13]. Digital simula-
tions of the VLSI network were implemented in MATLAB (SIMU-
LINK package) to represent only the theoretical model of a
decoupled neuron population. These simulations are conceived
to demonstrate that, despite the electronic irregularities, it is
possible to reach such a reliable quantitative control on the VLSI
network so that a MATLAB implementation of its theoretical
model can exactly reproduce its dynamics.

Software interface procedures implement an automatic cali-
bration of the neuron response by the tuning in real time of
current mean and variance, achieving a mean and a variance of
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the Inter Spike time Interval (ISI) within a limited ranges of
values. These procedures make uniform the network spiking
rates. The calibration is based on a real time feedback mechan-
ism: it recursively sets the current values according to the mean
and the variance of the spiking rates (1=ISI) which have been
measured in the previous step.

3. Decoupled network dynamics

Starting from the current integration model in a VLSI neuron
[3], this section presents methods to control the neural dynamics
inside the chip. The match between the theory, the VLSI imple-
mentation and the simulation for the neuron dynamics support
the following results: the statistical parameter of the injected
Gaussian currents can be finely tuned and measured; under the
Gaussian stimulation, the theory for the depolarization distribu-
tion well describes both the chip neuron and the simulated one.

3.1. Neuron dynamics model

The network is composed of integrate-and-fire electronic
neurons with constant leak, functionally equivalent to those
described in [1] and theoretically studied in [3]. These neurons
integrate linearly the total afferent current and, when the depo-
larization V crosses a threshold y, a spike is emitted and the
membrane potential is reset to H. The sub-threshold dynamics
can be described by the equation governing the voltage across a
capacitor

VðtÞ�Vðt0Þ ¼ �
Ib
C
ðt�t0Þþ

1

C

Z t

t0

Iðt0Þ dt0, ð1Þ

where I(t) is the sum of the external current and the pre-synaptic
currents, Ib is the leak current and C is the soma capacitance. The
total input current could be negative, therefore the above equa-
tion must be accompanied by the condition that V cannot go
below a minimal value Vrest, which is a reflecting barrier. Note
that Vrest oH. Making the assumption that the afferent current is
a sum of independent Poisson processes resulting in a Gaussian
distribution [2], and that far from the threshold y and the
reflecting barrier Vrest, the neuron depolarization is a stochastic
diffusion process, then the V(t) dynamics is well described by

dVðtÞ ¼ mðtÞ dtþsðtÞzðtÞ
ffiffiffiffiffi
dt
p

ð2Þ

where m and s are the mean and the standard deviation of the
current for a unit of capacity and z(t) is a Gaussian variable with a
zero mean and unit variance (for details see [3,14]). With the
Gaussian stimulation protocol, noting that dVðtÞ=dt¼ ðIðtÞ�IbÞ=C

(Eq. (1)) and starting from Eq. (2), we can calculate the mean and
variance of dVðtÞ=dt versus the statistical parameters of the
current values sequentially written on DACs

mth ¼
ðIext�IbÞ

C
ð3Þ

s2
th ¼

ts2
ext

C2
ð4Þ

where Iext is the mean of the current values written on DACs and
s2

ext the variance, t the time step between two successive DAC
writings of Iext and Ib is set to a constant value on the chip.

3.2. m and s setting by an automatic tuning

For a constant input current Iext (sext ¼ 0), the time behavior of
the neural depolarization V(t) is periodical: V(t) linearly increases
from the reset potential H to the emission threshold y in a fixed

time interval (Dt), which depends on the value of Iext and on the
integration capacity (C). Dt can be extracted from the recorded
spike emission times and DV equals y�H. Then, through the
values of Dt and DV , which are known for all the neurons,
m¼ dVðtÞ=dt is easily measured versus the constant input current
(Iext) (with Ib ¼ 0 mA) and the distribution of input neural capa-
cities can be extracted from the equation dVðtÞ=dt ¼ Iext=C. The
capacity C, through which the neurons integrate the currents, is
the sum of all involved capacities (including the parasitic ones)
inside the neuron circuit. The capacity distribution is very
inhomogeneous: for example neuron 1 shows C¼461 pF, neuron
4 shows C¼123 pF and neuron 8 shows C¼194 pF. Because of the
differences among the capacities, the neural emission rates are
also very different for the same value of the external input
current. For Gaussian stimulation some examples are reported:
setting ðIext�IbÞ ¼ 0 mA and sext ¼ 0:017 mA, the neurons 1, 4 and
8 emit spikes at the rates 5 Hz, 11 Hz and 8 Hz respectively;
with ðIext�IbÞ ¼ 0:01 mA and sext ¼ 0:042 mA, the spiking frequen-
cies are 52 Hz, 193 Hz and 95 Hz; for Iext�Ib ¼ 0:02 mA and
sext ¼ 0:025 mA, the rates are 74 Hz, 244 Hz and 160 Hz.

As the current calibration is necessary (considering the var-
iances among emission frequencies) and the capacities must be
measured for calculating the current statistical parameter mth and
sth (Eqs. (3) and (4)) for all the neurons, automatic procedures
have to be implemented for large VLSI neural networks.

After an automatic calibration of the Gaussian current, the
theoretical predictions of mth and sth (Eqs. (3) and (4)) are
checked: if the depolarization V is sampled with a temporal step
texp4t, where t¼ 1 ms is the time between two DAC writings of
Iext, the experimental mean and the variance are calculated as

mexp ¼
/dVS
texp

ð5Þ

s2
exp ¼

/dV2S�/dVS2

texp
ð6Þ

where dV is the difference between the two successive samples
of V.

There is a very good concordance for the positive mean (for
example (mth ¼ 46:7 V=s, s2

th ¼ 7:3 V2=s) and (mexp ¼ 46:3 V=s,
s2

exp ¼ 7:4 V2=s)), whereas we can see the effects of the reflecting
barrier Vrest for the negative mean (for example (mth ¼�28:6 V=s,
s2

th ¼ 18:1 V2=s) and (mexp ¼�11:4 V=s, s2
exp ¼ 10:8 V2=s)). The

large variance and very negative mean imply that the depolariza-
tion spends a lot of time near the reflecting barrier Vrest, that
prevents mexp and s2

exp reaching the values expected by the Eq. (3),
which does not consider the presence of the reflecting barrier.
Improvements of the (mth, sth)-computation will be considered in
future works.

3.3. Depolarization probability density

Once it has been demonstrated that it is possible to control the
VLSI neuron integration of the Gaussian current, the theoretical
probability density of the depolarization V is validated by a
comparison between the chip and the simulated neuron behavior.

In Fig. 1, the probability density of V is experimentally
represented by histograms of depolarization samples, and theo-
retically by a black line (for details on how to calculate the
theoretical equation see [3]): in the left column the depolarization
for the VLSI neuron, in the right column is the simulated neuron
result. In the simulations, for the positive mean of input current
(first 3 rows) the values of mth and sth are employed to stimulate
the neuron, whereas for the negative mean (last 3 rows) mexp and
sexp are used. The match is good for all of the cases of positive
mean current if the translation of the histograms from the
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