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ABSTRACT

Statistical classification of voxels in brain magnetic resonance (MR) images into major tissue types plays an
important role in neuroscience research and clinical practices, in which model estimation is an essential step.
Despite their prevalence, traditional techniques, such as the expectation-maximization (EM) algorithm and
genetic algorithm (GA), have inherent limitations, and may result in less-accurate classification. In this paper,
we introduce the immune-inspired clonal selection algorithm (CSA) to the maximum likelihood estimation
of the Gaussian mixture model (GMM), and thus propose the GMM-CSA algorithm for automated voxel
classification in brain MR images. This algorithm achieves simultaneous voxel classification and bias field
correction in a three-stage iterative process under the CSA framework. At each iteration, a population of
admissible model parameters, voxel labels and estimated bias field are updated. To explore the prior
anatomical knowledge, we also construct a probabilistic brain atlas for each MR study and incorporate the
atlas into the classification process. The GMM-CSA algorithm has been compared to five state-of-the-art brain
MR image segmentation approaches on both simulated and clinical data. Our results show that the proposed

algorithm is capable of classifying voxels in brain MR images into major tissue types more accurately.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Accurate delineation of major brain tissues, such as the gray matter
(GM), white matter (WM), and cerebrospinal fluid (CSF), in magnetic
resonance (MR) images plays a pivotal role in both neuroscience
research and clinical practices. The quantification of the volumetric
tissue changes, for instance, is an essential step in diagnosing mental
diseases and monitoring their progressions. Traditionally, brain tissue
delineation relies on manual operation performed by medical profes-
sionals, which, however, is time-consuming, expensive and subject to
intra-and inter-observer variability. Therefore, automated brain MR
image voxel classification is highly in demand and has attracted
extensive research attention. As a result, a large number of algorithms
have been proposed in the literature [1-13], including those based on
the atlas [6-8] and statistical models [9-12].

Atlas-based brain voxel classification algorithms involve a joint
registration-comparison process, with the aim of generating an
“average” organ representation, i.e. the atlas, from the training image
dataset or anatomy, and then mapping the anatomical structure from
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the atlas to the to-be-classified image through co-registration [8].
Despite its widespread applications, these approaches may have a
limited performance due to the normal anatomical variation across
patients, inaccuracy of the registration and the atlas itself.

Statistical voxel classification algorithms have rigorous mathema-
tical formulations and have been widely applied to brain MR images.
In these algorithms, voxel values are usually assumed to follow a
Gaussian mixture model (GMM), which is a weighted sum of finite
Gaussian distributions. Each component distribution models the
voxel values from one tissue type, and each weight, also known as
a mixing parameter, represents the prior probability of voxels
belonging to the corresponding tissue type. These algorithms usually
consist of two major steps: estimating the optimal model parameters
that can maximize the likelihood of the observed image and applying
the image data and statistical model to a classifier to generate the
class label for each voxel. In the traditional GMM-EM algorithm [9],
the GMM model is estimated by using the expectation—-maximization
(EM) algorithm and the class labels are generated by using the Bayes
classifier. The EM algorithm iteratively alternates between an expec-
tation step (E-step), which computes an expectation of the log
likelihood with respect to the currently estimated distributions and
the observed image, and a maximization step (M-step), which
estimates the GMM parameters which maximize the expected log
likelihood.
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Fig. 1. Simulated T1-weighted brain MR image with 3% noise and (top row) no INU or (bottom row) 40% INU selected from the BrainWeb database [24].

Due to the remarkable consistency shown in brain structures
across individuals, the knowledge of brain anatomy can be an effective
heuristic prior available for this classification task. To incorporate such
prior knowledge into the classification process, atlas-based and
statistical approaches have been combined to form a uniformed
framework in several approaches [10,12]. Although these modifica-
tions have substantially improved the voxel classification accuracy,
most of them still rely on the EM-based model estimation, which is
intrinsically a greedy approach that may converge to a local maximum
of the observed data likelihood function. Hence, the performance of
these algorithms depends highly on initializations [14]. An intuitive
solution to overcome this drawback is to replace the EM algorithm
with global optimization techniques in model estimation. A typical
example is the GA-EM algorithm [11], in which the genetic algorithm
(GA), a population-based global optimization technique, is used to
achieve the maximum likelihood estimation of statistical model.

As a traditional evolutionary algorithm, GA has the drawback of
slow convergence and lack of the local search ability. Recently,
optimization algorithms inspired by the immune system has drawn
increasing attentions as a potential source of more effective evolu-
tionary algorithms [15]. These algorithms mimic the behavior of
living organisms in protecting themselves against antigens, and
hence have the potential to achieve both local and global optima.
Among them, the clonal selection algorithm (CSA) has shown
superior performance comparing to several other bionic algorithms
[15] and traditional optimizing mechanisms in a variety of applica-
tions [16,17]. CSA is designed to simulate the affinity maturation
process based on the clonal selection theory, which claims that only
those cells that recognize the antigens will be selected to proliferate,
and the proliferated cells will improve their affinity to the antigens
through an affinity maturation process [15,18,19].

Naturally, more accurate brain voxel classification can be
expected when using CSA to replace traditional deterministic
(such as EM) and evolutionary (such as GA) algorithms in the
statistical model estimation. In this paper,' we propose the GMM-
CSA algorithm for automated brain voxel classification in MR
images. We include adaptive bias field estimation and correction
in the iterative model estimation and voxel classification process,
so that these operations can benefit each other to yield better
results. We also use a set of training data to construct a probabil-
istic brain atlas for each study and employ this atlas to facilitate

1 The preliminary version of this paper was presented in IScIDE 2011 [20].

voxel classification with the aim of achieving more stable perfor-
mance. We have compared the proposed GMM-CSA algorithm to
the EMS algorithm [10], GA-EM algorithm [11], Genetic VEM
(GVEM) algorithm [12] and two state-of-the-art brain MR image
segmentation routines in the widely used statistical parametric
mapping (SPM) package [21] and FMRIB Software library (FSL) [22]
on both simulated and real brain MR images.

2. Bias field estimation

The inherent challenge faced by brain voxel classification is the bias
field, also referred to as the intensity inhomogeneity or intensity non-
uniformity (INU), existed in MR images. The bias field arises from the
imperfections of the image acquisition process and manifests itself as a
smooth intensity variation across the image [23]. A simulated brain
MR slice with 3% noise and the corresponding bias filed corrupted
version [24] are compared in Fig. 1. It shows that, due to the existence
of 40% INU, the intensity of the same tissue varies with the spatial
locations and the overlaps among three modes in the histogram
increase significantly. Thus, the bias field may cause a lot of difficulties
in MR image analysis and should be estimated and corrected [25-30].

Let an observed 3D brain MR image be denoted by X =
{x;;i=1,2,...,N}, where x; represents the intensity value at voxel
i and N is the number of voxels. Generally, the unknown bias field
B={b;;i=1,2,...,N} can be modeled as a multiplicative compo-
nent of X, as follows:

X=B-X0+R M

where X0 is the ideal image without bias field, and X ~ N(0, 62) is
the additive Gaussian white noise. The bias field B varies very
slowly in the image, and hence is usually assumed to be a smooth
function defined within the entire image domain. We adopt
orthogonal polynomials {W;:j=1,2,...,Npp} as basis functions
to approximate the bias field [31]

Nop
B= '21 (ijj (2)
j=

where ¢ = {¢; : j=1,2,...,Nop} denote the real-valued combination
coefficients, Nop = (D+1)(D+2)/2 is the number of polynomials,
and D is the degree of polynomials. Theoretically, such an approx-
imation can achieve up to arbitrary accuracy [32].



Download English Version:

https://daneshyari.com/en/article/410046

Download Persian Version:

https://daneshyari.com/article/410046

Daneshyari.com


https://daneshyari.com/en/article/410046
https://daneshyari.com/article/410046
https://daneshyari.com

