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a b s t r a c t

In this paper we propose a concavely regularized convex relaxation based graph matching algorithm. The
graph matching problem is firstly formulated as a constrained convex quadratic program by relaxing the
feasible set from the permutation matrices to doubly stochastic matrices. To gradually push the doubly
stochastic matrix back to be a permutation one, an objective function is constructed by adding a simple
weighted concave regularization to the convex relaxation. By gradually increasing the weight of the
concave term, minimization of the objective function will gradually push the doubly stochastic matrix
back to be a permutation one. A concave–convex procedure (CCCP) together with the Frank–Wolfe
algorithm is adopted to minimize the objective function. The algorithm can be used on any types of
graphs and exhibits a comparable performance as the PATH following algorithm, a state-of-the-art graph
matching algorithm but applicable only on undirected graphs.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Graph matching plays a central role in many graph based
techniques. For instance, graph is frequently used as the structural
representation of objects in computer vision and pattern recogni-
tion, and consequently the graph matching algorithm is commonly
used to solve the object matching problem [5,1]. Graph matching
involves identifying each vertex pair between graphs in some
optimal way, or inherently finding a good permutation matrix
between the two adjacency matrices of both graphs.1 The problem
is in nature a NP-hard combinatorial optimization problem with a
factorial complexity, except for some graphs with special struc-
ture, such as the planar graphs, which has shown to be of
polynomial complexity [13]. Therefore, an exhaustive search algo-
rithm is computationally prohibited in practice, except for some
small scale problems.

To make the problem computationally tractable, many approx-
imate approaches have been proposed, trying to seek a good trade-
off between the complexity and matching accuracy. As summar-
ized in [4], approximate matching algorithms can be roughly
categorized into three groups, tree search based methods, spectral
methods and continuous optimization (relaxation techniques).
Tree search methods [22,6] are based on some simplifications of

the depth-first search, for instance. Their performances depend
largely on the problem nature, i.e., graph structure. The spectral
methods [23,25] have their roots in the fact that the eigenvalues of
the adjacency matrices of two isomorphic graphs are identical to
each other. Unfortunately, the converse conclusion may be quite
wrong, that is, two graphs with identical eigenvalues may be far
from isomorphic. This might make the spectral methods result in
a quite poor matching when the two graphs are not isomorphic.

Relaxation techniques involve relaxing the combinatorial
matching problem to be a continuous one. The key point lies in
the fact that optimization over a continuous set is usually easier to
be approximated than its discrete counterpart. Specifically, the
graph matching problem involves relaxing the set of permutation
matrices, denoted by P, to its convex hull, i.e., the set of doubly
stochastic matrices denoted by D. Typical relaxation techniques in
the literature include for instance relaxation labeling [7,17],
graduated assignment [9] and PATH following algorithm [28].
The relaxation labeling assigns each vertex of one graph with a
probabilistic discrete label, and updates the label based on some
measures, such as the vertex connectivity [7] or edit distance [17].
A common problem faced by the relaxation techniques is the
backprojection which involves projecting the continuous solution
found by the relaxed problem back to be a discrete one. Intuitively,
given a PdAD, the backprojection can be accomplished by a
maximal linear assignment schema as given in (7), which is
commonly employed by the relaxation labeling. However, such a
linear projection may introduce a significant additional error. A soft
assignment schema controlled by a parameter was introduced by
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the graduated assignment algorithm to control the non-convexity
of the problem [9]. As the parameter increases to be large enough, a
permutation matrix is expected to be obtained though usually a
clean-up step is further needed.

Different from the graduated assignment algorithm, the PATH
following algorithm introduces a weighted linear combination of
convex and concave relaxations to gradually get the discrete
solution. Specifically, given the two graphs GD ¼ ðVD; EDÞ and
GM ¼ ðVM ; EMÞ to be matched where V and E, respectively, denote
the sets of vertices and edges, it adopts the following square of
Frobenius matrix norm as the objective function:

f ðPÞ ¼ JAD�PAMP
T J2F ¼ trðAD�PAMP

T ÞT ðAD�PAMP
T Þ; PAP ð1Þ

where AD and AM denote the adjacency matrices of GD and GM,
respectively, P denotes the set of permutation matrix. By taking
advantage of PAP, a convex relaxation of (1) can be found as
follows [28]:

f vðPÞ ¼ vecðPÞTQ vecðPÞ; PAD; ð2Þ
where vecðPÞ creates a column vector from the matrix P by
stacking the column vectors of P, and Q ¼ ðI � AD�AT

M � IÞT ðI �
AD�AT

M � IÞARN2�N2
is a symmetric definite positive matrix. The

concave relaxation introduced by the PATH following algorithm is
given by

f cðpÞ ¼ �trðΔPÞ�2 vecðPÞT ðLTM � LTDÞ vecðPÞ; PAD; ð3Þ
where Δij ¼ ðDMði; iÞ�DDðj; jÞÞ2, with D and L denoting the degree
and Laplacian matrices of the graph, respectively. The concave
relaxation holds the same minima as the original matching
problem, but it is applicable only on undirected graphs without
self-loops. Based on the convex and concave terms above, the
objective function of the PATH following algorithm is given by

f pathðγ; PÞ ¼ γf vðPÞþð1�γÞf cðPÞ; PAD; ð4Þ
where γA ½0;1� controls the non-convexity of the objective: a large
γ means that f pathðP; γÞ tends to be convex; by contrast, a small γ
makes f pathðP; γÞ concave. Thus, by gradually decreasing γ from 1 to
0, the objective becomes finally a concave one, and its minimiza-
tion results in a permutation matrix. On equal-sized graph
matching problems the PATH following algorithm exhibited a
state-of-the-art performance in terms of both accuracy and com-
plexity [28].

However, the PATH following algorithm cannot be used to solve
the matching problem between directed graphs because the term
in Eq. (3) can no longer guarantee to be concave. In this paper we
introduce a much simpler concave term which can be applied on
both directed and undirected graphs. Though the simple concave
term is not a relaxation of the original matching problem, it is
shown that it has a comparable performance as Eq. (3) on
matching accuracy.2 Moreover, instead of directly using the
Frank–Wolfe algorithm, we firstly adopt the concave–convex
procedure (CCCP) [27] to decompose the objective into a sequen-
tial constrained convex quadratic program, which is then solved by
the Frank–Wolfe algorithm [8], avoiding the trouble of line search
on a non-convex function. Section 2 is devoted to the proposed
method, some experimental illustrations and discussions are given
in Section 3, and finally Section 4 concludes the paper.

2. Proposed method

The objective function for the graph matching problem is firstly
proposed, and then the CCCP together with Frank–Wolfe

algorithm is proposed to minimize the objective, followed by an
efficient initialization given by simplicial decomposition.

2.1. Objective function

The proposed objective function takes a similar form as Eq. (4),
with the same convex relaxation but with a different concave
term. To make the algorithm applicable for matching problems on
both directed and undirected graphs, we propose to use the
following concave term:

f cðPÞ ¼ �vecðPÞT vecðPÞ; PAD: ð5Þ
Then, similar to Eq. (4) an objective function of the graph matching
problem is formulated as follows:

min: f γðPÞ ¼ γ vecðPÞTQ vecðPÞ�ð1�γÞ vecðPÞT vecðPÞ; s:t: PAD:

ð6Þ
It is obvious that minimization of the concave term given by
Eq. (5) results in an extreme point of D, i.e., a permutation matrix.
Thus, by gradually decreasing γ from 1 to 0, minimization of the
objective will make P gradually converge to a permutation matrix.

At the beginning when γ¼1, the objective function (6) degen-
erates to the convex relaxation, whose global minimization
denoted by Pv can be obtained by the Frank–Wolfe algorithm
(here we adopt the simplicial decomposition as discussed below).
Actually, a permutation matrix can be directly obtained by an
optimal linear assignment procedure which casts the doubly
stochastic matrix Pv to be a permutation matrix Pp via

Pp ¼ arg max
PAP

tr PT
vP: ð7Þ

The assignment can be solved by the Hungarian algorithm [14],
with a computational complexity OðN3Þ. Such a hard-cut operation
based graph matching algorithm, named QCV (quadratic convex),
may however bring a big error into the final result, as to be
witnessed by the experimental results in Section 3. By contrast, as
γ gradually decreases, P is gradually pushed away from Pv in the
way that update of P is guided to approach a permutation matrix
with a smaller matching error. This point can be intuitively
understood in the following way. During the convergence process
the update direction of P comprises two parts, gv(P) and gc(P), the
directions provided by the convex and concave terms, respectively.
Guidance from gv(P) is to minimize the increase of the convex
term, which, if can be globally minimized during the whole
process, is equal to the difference between the best matching
error and the global minimization of the convex relaxation got by
Pv. On the other hand, gc(P) provides no informative search
direction since any permutation matrix gives the same global
minimum for the concave term. Thus, in the global minimization
sense it is under the guidance of gc(P) that P is expected to
approach a permutation matrix with a relatively small matching
error.

To get an intuitive feel about the process, a simple example on
matching two directed graphs with self-loops and with N¼3 is given
as shown in Fig. 1. P is parameterized as P ¼ ½b; a;1�a�b;
d; c;1�c�d;1�a�c;1�b�d; aþbþcþd�1� with the constraints
aA ½0;1�; dA ½0;1�; bA ½0;π�; cA ½0;π� where π ¼ 1�maxfa; dg. In
Fig. 1 the objective function is plotted by changing b and c with
fixed a and d at their current estimations. As γ ¼ 1, P converges from
the initial 13�3=3 to a¼ 0:462; d¼ 0:305; b¼ 0:374; c¼ 0:451, based
on which the QCV gets the result as PAP ¼ ½0;1;0;1;0;0;0;0;1�. As
the algorithm proceeds, it is illustrated by the figure how P gradually
approaches another solution with a smaller matching error, i.e.,
P ¼ I3, where AD ¼ ½0:496;0:302;0:826;0:179;0:390;0:876;0:037;
0:998;0:999� and AM ¼ ½0:652;0:505;0:498;0:117;0:936;0:839;
0:760; 0:403; 0:970�.

2 In our subsequent works we show theoretically that the simple concave term
realizes exactly a concave relaxation.
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