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a b s t r a c t

Binary Factor Analysis (BFA) uncovers the independent binary information sources from observations
with wide applications. BFA learning hierarchically nests three levels of inverse problems, i.e., inference
of binary code for each observation, parameter estimation and model selection. Under Bayesian Ying-
Yang (BYY) framework, the first level becomes an intractable Binary Quadratic Programming (BQP)
problem, while model selection can be conducted automatically during parameter learning. We conduct
extensive experiments to reveal that the performance order of four BQP methods is reversed from
making BQP optimization to making BYY automatic model selection, which implies that learning is
not merely optimization. Moreover, the BFA learning algorithm is further developed with priors over
parameters to improve the performance. Finally, based on BFA, we empirically compare BYY with
Variational Bayes (VB) and Bayesian information criterion (BIC).

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Binary Factor Analysis (BFA) explores latent binary structures
of data. Unlike the conventional factor analysis where the latent
factor is assumed to be Gaussian, BFA traces the observation to
independent Bernoulli information sources. Research on BFA has
been focused on analysis of binary data, such as social research
questionnaires and market basket data, with the aid of Boolean
algebra [1], and also on the discovery of binary factors in
continuous data, [2–4], taking advantage of the representational
capacity of the underlying binary structure. When considering all
the random variables to be binary, factor analysis becomes the
restricted Boltzmann machine which is the building block of the
deep belief network [5]. This paper considers the same BFA model
as in [4,2], under Bayesian Ying-Yang (BYY) harmony learning
[6,7], in a comparison with Variation Bayes (VB) [8] and Bayesian
information criterion (BIC) [9]. Rissanen's Minimum Description
Length (MDL) stems from another viewpoint but coincides with
BIC when it is simplified to a simple computable criterion [10].

The hierarchy of all unknowns in a learning system makes the
learning process not just an optimization but a series of hierarchi-
cally nested continuous or discrete optimizations. As summarized
in [7], there are three levels of inverse problems, i.e., inverse
inference from observation to inner representation, parameter
learning, and model selection. In terms of BFA, the first level of
inverse problems in BFA is the inference of an m-bit inner binary

code yðxÞ or a 2m-point posterior distribution pðyjxÞ for each
observation x, given the parameters and the coding length of y,
i.e., m¼ dimðyÞ. It is difficult due to its combinatorial complexity.
Under BYY, maximizing the objective functional turns this problem
into a Binary Quadratic Programming (BQP) problem that searches
an optimal binary code yðxÞ for each training sample x. A
preliminary study in [11] compared four BQP methods and
suggested that some amount of error in BQP optimization is not
always a bad thing but instead provides a helpful regularization for
the learning process. Conventionally, the second and the third
level are implemented by a two-phase procedure, i.e., parameter
learning (usually maximum likelihood learning) is conducted for
each m in a candidate set M, one of which is then selected by a
model selection criterion, e.g., BIC [9]. However, this two-phase
implementation suffers from a huge computation, because it
requires parameter learning that is nested with a BQP for each
mAM. Moreover, a larger m often implies more unknown para-
meters, and thus parameter estimation becomes less reliable so
that the criterion evaluation reduces its accuracy, see Section 2.1 in
[12] for a detailed discussion.

This paper further investigates the four BQP methods in [11] used
for the BYY learning on BFA. One is the exact BQP solver by
enumeration (shortly denoted as enum). The other three are approx-
imate methods, i.e., the greedy method in [13], the cdual method
derived from the canonical duality theory [14], and the roundmethod
by relaxing the binary y to a continuous one and rounding the optimal
solution back to binary [15]. Their BQP optimization performances
follow an order: roundocdualogreedyoenum. Extensive experi-
ments show that cdual and round are fast and more effective in
discarding extra factors, and lead to much better model selection
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performances than greedy and enum. Actually, some amount of error
in BQP provides a helpful learning regularization with a gain on both
computational efficiency and model selection performance.

Moreover, automatic model selection is adopted to save the
computation of two-phase implementation by starting from a
large enough m and then discarding redundant binary factors
during parameter learning. We further develop BFA learning
algorithms by considering prior distributions over parameters,
which play a role of Bayesian regularization. With the help of
priors, enum and greedy improve their automatic model selection
performances, but are still inferior to cdual and round.

Finally, we empirically investigate the performance between
BYY, VB, and BIC. Such comparisons have been made on factor
analysis in [16] and Gaussian mixture model in [17], but not on
BFA yet. We simplify the VB-ICA algorithm [18,19] to obtain a VB
algorithm on BFA. The results reveal that BYY is the best for most
configurations, while BIC is more robust than VB. VB is good only
when both training sample size N is large and noise is small, and
declines drastically when N reduces and noise increases. Moreover,
applied to the problem of blind binary image separation, the
results again show that BYY outperforms VB.

The rest of this paper is organized as follows. BFA model is
introduced in Section 2. BYY harmony learning is briefly reviewed
in Section 3, and a BYY-BFA algorithm is derived with priors over
the parameters. Section 4 introduces VB and BIC for an empirical
analysis in Section 5, while concluding remarks are given in
Section 6.

2. Binary Factor Analysis

In Binary Factor Analysis (BFA), an n-dimensional observed
variable x is modeled as

x¼ Ayþcþε; ð1Þ

where the hidden factor vector yAf�1;1gm is an internal binary
code with each element being either �1 or 1 drawn from a
Bernoulli distribution, and y is independent of the Gaussian noise
ε. This model has been studied previously from different perspec-
tives [15,4,2].

The BFA can also be mathematically formalized by the follow-
ing probabilistic distributions:

qðyjΘÞ ¼ ∏
m

i ¼ 1
βð1þyiÞ=2
i ð1�βiÞð1�yiÞ=2; qðxjy;ΘÞ ¼ GðxjAyþc;ΣeÞ;

ð2Þ

where β¼ ½β1;…;βm�, 0oβio1, i¼ 1;2;…;m, Σe is a positive
definite diagonal matrix, and Gð�jμ;ΨÞ denotes a Gaussian dis-
tribution with mean μ and covariance Ψ, and Θ¼ fA;β; c;Σeg is
the set of parameters.

Similar to [20,18], we consider the joint prior distribution on
the parameters Θ¼ fA;Σe;β; cg to be a product of distributions on
each parameter independently:

qðΘjΞÞ ¼ qðAÞqðβÞqðcÞqðΣeÞ; ð3Þ

where Ξ is the set of hyperparameters. Each column ai of A is
independently distributed according to a Gaussian distribution
with its covariance controlled by a precision parameter αi which is
further assumed to follow a Gamma distribution

qðAÞ ¼ ∏
m

i ¼ 1
G aij0;

1
αi
In

� �
; qðαiÞ ¼Γðαijaα; bαÞ; ð4Þ

where Γðxja; bÞ ¼ ðba=ΓðaÞÞxa�1e�bx denotes the Gamma density. A
Dirichlet distribution is appropriate for each βi which satisfies

βA ½0;1�:

qðβÞ ¼ ∏
m

i ¼ 1
Dðβijλi; ξiÞ ¼ ∏

m

i ¼ 1

ΓðξiÞ � βξiλi1 �1
i ð1�βiÞξiλi2 �1

ΓðξiβiÞΓðξið1�βiÞÞ
: ð5Þ

Usually, qðμÞ is assumed to be a Gaussian with zero mean, i.e.,
Gðμjμ0; λ

μ
0InÞ. Moreover, the case of isotropic noise is considered, i.

e., Σe ¼φ�1In, and a Gamma distribution is imposed on the noise
precision parameter φ:

qðΣeÞ ¼ qðφÞ ¼Γðφjaφ; bφÞ: ð6Þ

3. Bayesian Ying-Yang (BYY) harmony learning

Firstly proposed in [6] and systematically developed over a
decade and half [12,21], the Bayesian Ying-Yang harmony learning
theory is a unified statistical learning framework under a best
harmony principle, which leads to a new family of algorithms that
performs automatic model selection during parameter learning.
The best harmony is mathematically to maximize the following
general harmony functional [12,7]:

HðpJqÞ ¼
Z

pðXÞpðRjXÞln½qðXjRÞqðRÞ�dR dX ð7Þ

HðpJqÞ ¼
Z

pðΘjXÞHðpJq;ΘÞdΘ; ð8Þ

HðpJq;ΘÞ ¼
Z

pðY jX;ΘÞpðXÞln½qðXjY ;ΘÞqðY jΘÞ�dY dXþ ln qðΘjΞÞ;

ð9Þ
where the observation X is regarded to be generated from its inner
representation R¼ fY ;Θg with latent variable Y and parametersΘ.
As interpreted in [7], maximizing HðpJqÞ forces qðXjRÞqðRÞ to
match pðRjXÞpðXÞ. Due to a finite sample size and practical
constraints on pðRjXÞ, this matching aims at but may not really
reach a perfect matching pðRjXÞpðXÞ ¼ qðXjRÞqðRÞ. Still, we get a
trend at this equality which turns HðpJqÞ into a negative entropy
that describes the complexity of system, and thus further max-
imizing it leads to a least complexity. Hence, this matching is not
in a maximum likelihood sense but with a promising model
selection nature. Readers are referred to not only a summary of
nine aspects on the novelty and favorable natures of BYY harmony
learning, made at the end of Section 4.1 in [12], but also the
roadmap shown in Fig. A2 in [12], as well as to a systematic outline
on the 13 topics about best harmony learning in Section 7 in [21].

The model selection performance of not only BYY criterion but
also BYY automatic model selection on BFA has been compara-
tively investigated in [4], in comparison with existing typical
model selection criteria, including Bayesian Information Criterion
(BIC) [9] etc., which are implemented in a two-phase procedure
that first trains a set of candidate models and then selects the one
with the minimum criterion value. This two-stage implementation
suffers from a huge computation because it requires parameter
learning for each candidate model scale. Moreover, a larger model
scale often implies more unknown parameters, and thus para-
meter estimation becomes less reliable so that the criterion
evaluation reduces its accuracy, see Section 2.1 in [12] for a
detailed discussion. This paper focuses on BYY based automatic
model selection, incorporated with appropriate prior distributions
on parameters.

Specifically, we consider the BFA model by Eq. (2) with indepen-
dently and identically distributed (i.i.d.) samples in XN ¼ fxtgNt ¼ 1,
from which we have

qðXjY ;ΘÞ ¼∏
t
qðxt jyt ;ΘÞ; qðY jΘÞ ¼∏

t
qðyt jΘÞ; ð10Þ
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