
Multi-layer quantum neural network controller trained by real-coded
genetic algorithm

Kazuhiko Takahashi a,n, Motoki Kurokawa b, Masafumi Hashimoto c

a Information Systems Design, Doshisha University, Kyoto 610-0321, Japan
b Graduate School of Doshisha University, Kyoto 610-0321, Japan
c Intelligent Information Engineering and Science, Doshisha University, Kyoto 610-0321, Japan

a r t i c l e i n f o

Article history:
Received 5 June 2012
Received in revised form
31 October 2012
Accepted 31 December 2012
Available online 28 January 2014

Keywords:
Quantum neural network
Qubit neuron
Real-coded genetic algorithm
Control
Identification

a b s t r a c t

We investigate a quantum neural network and discuss its application to controlling systems. First, we
consider a multi-layer quantum neural network that uses qubit neurons as its information processing unit.
Next, we propose a direct neural network controller using the multi-layer quantum neural network. To
improve learning performance, instead of applying a back-propagation algorithm for the supervised training
of the multi-layer quantum neural network, we apply a real-coded genetic algorithm. To evaluate the
capabilities of the direct quantum neural network controller, we conduct computational experiments
controlling a discrete-time nonlinear system and a nonholonomic system (a two-wheeled robot). Experi-
mental results confirm the effectiveness of the real-coded genetic algorithm in training a quantum neural
network and prove the feasibility and robustness of the direct quantum neural network controller.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Feynman [1] introduced the possibility of using quantum
mechanical systems for reasonable computing. After Deutsch [2]
proposed the first quantum computing model, several quantum
computing algorithms, such as Shor's factoring algorithm [3] and
Grover's search algorithm [4], were proposed. Similarly, interest in
artificial neural networks based on quantum theoretical concepts
and techniques (hereafter called quantum neural networks)
increased after Kak [5] first presented the concept of quantum
neural computing. This increase in interest was due to the belief
that quantum neural networks may provide a new understanding
of certain brain functions and also help solve classically intractable
problems [6]. In quantum computing, ‘qubits’ (an abbreviation for
quantum bits) of quantum computers are the counterparts of ‘bits’
of classical computers. Qubits are used to store the states of
circuits during quantum computations. Multi-layer quantum
neural networks utilize qubit neurons as information processing
units [7,8]. In the qubit neuron model, neuron states are connected
to the quantum states and transitions between neuron states are
based on operations derived from quantum logic gates. The high-
learning ability of multi-layer quantum neural networks with
qubit neurons has been demonstrated via numerous basic bench-
mark tests and applications [9–14]. From the viewpoint of control

applications, the high-learning ability of multi-layer quantum
neural networks can be used to control a wide class of systems.
However, because studies on applying multi-layer quantum neural
networks to control systems have not yet been completed, the
characteristics of control systems based on quantum neural net-
works have not yet been clarified. Moreover, these previously
mentioned works apply the back-propagation algorithm to train
the multi-layer quantum neural network, which minimizes a
quadratic cost function using the steepest descent method. When
the back-propagation algorithm is used, the convergence of the
training procedure for quantum neural networks depends on the
initial conditions of the network parameters. Moreover, depending
on the search surface of the cost function being optimized, the
training procedure occasionally falls into local minima. To address
this issue, several approaches used in conventional neural net-
works, such as the combination of the back-propagation algorithm
and a random search algorithm [15], could be used to improve the
training of quantum neural networks. However, control applica-
tions that use quantum neural networks trained by the back-
propagation algorithm need to address the Jacobian problem [16],
i.e., the calculation of the derivative of the cost function requires
sensitivity information of the output of the target system being
controlled with respect to the control input.

We investigate the application of multi-layer quantum neural
networks with qubit neurons to controllers. Specifically, we
develop a method for designing and evaluating control systems
on the basis of quantum neural networks. Several control systems
using quantum neural networks can be considered, e.g., a direct

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.neucom.2012.12.073

n Corresponding author.
E-mail address: katakaha@mail.doshisha.ac.jp (K. Takahashi).

Neurocomputing 134 (2014) 159–164

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2012.12.073
http://dx.doi.org/10.1016/j.neucom.2012.12.073
http://dx.doi.org/10.1016/j.neucom.2012.12.073
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2012.12.073&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2012.12.073&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2012.12.073&domain=pdf
mailto:katakaha@mail.doshisha.ac.jp
http://dx.doi.org/10.1016/j.neucom.2012.12.073

controller in which the control input to the target system utilizes
the output from the quantum neural network directly, a parallel
controller in which the control input consists of the output from
the quantum neural network and the output from a conventional
controller and a self-tuning controller in which the control input is
generated by a conventional controller whose parameters are
adjusted by the quantum neural network. We consider a direct
controller that uses a multi-layer quantum neural network (here-
after called direct quantum neural network controller), because it
has the simplest structure and is suitable for investigating the
basic characteristics of quantum neural networks. To improve the
learning performance of the quantum neural network and over-
come the Jacobian problem, we utilize a real-coded genetic
algorithm because it can conduct global optimization and does
not require the Jacobian information during the training process of
the direct quantum neural network controller. In Section 2, we
present multi-layer quantum neural networks that use qubit
neurons as its information processing unit and describe the direct
quantum neural network controller. In Section 3, we evaluate the
feasibility of using direct quantum neural network controllers by
conducting computational experiments of controlling a discrete-
time system and a nonholonomic robotic system (a two-wheeled
robot).

2. Quantum neural network controller

2.1. Quantum neural networks with qubit neurons

In quantum computing, a qubit state jψ 〉 maintains a coherent
superposition of states: jψ 〉¼ aj0〉þbj1〉, where j0〉 corresponds to
bit 0 of the classical computers, j1〉 corresponds to bit 1 and a and
b are complex numbers called probability amplitudes that satisfy
jaj2þjbj2 ¼ 1. Moreover, two quantum logic gates, such as a 1-bit
rotation gate and a 2-bit controlled NOT gate, are often utilized to
operate a qubit state. Using the phase ϕ, we can express the
operations of these gates by the quantum state. Specifically, the
rotation gate, which is a phase-shift gate that transforms the phase
of quantum states, can be expressed by f ðϕ1þϕ2Þ ¼ f ðϕ1Þf ðϕ2Þ,
where f ðϕÞ ¼ eiϕ (i) is an imaginary unit). The controlled NOT gate,
which is the phase reverse operation defined with respect to the
controlled input parameter γ, can be expressed by f ðπγ=2�ϕÞ,
where γ¼1 and γ¼0 correspond to the reversal rotation and the
non-rotation, respectively. By considering these gates, the state of
the j-th qubit neuron model in the m-th sets, zjm, is defined as
follows:

zmj ¼ f
π
2
δmj �arg ∑

k
f ðθm

k;jÞf ðzm�1
k Þ� f ðλmj Þ

" #()
ð1Þ

here zm�1
k is the input from the k-th neuron in the (m�1)-th sets,

δjm is the reversal parameter corresponding to the controlled NOT
gate, θm

k;j is the phase parameters corresponding to the phase of the
rotation gate and λjm is a threshold parameter.

A multi-layer quantum neural network is designed by combin-
ing the qubit neurons in the layers. First, in the input layer
(indicated by the superscript m of I), network inputs xk in the
range [0, 1] are converted into quantum states with phases in the
range [0, π/2]. Next, outputs given by zIk ¼ f ðπxk=2Þ are fed into the
neurons in the hidden layer (indicated by the superscript m of H).
In the hidden and output layers, the outputs of the neurons are
represented by Eq. (1). By considering the probability of the state
in which j1〉 is observed from the j-th neuron of the output layer
(indicated by the superscript m of O), the output from the network
uNNj

is represented follows:

uNNj
¼ jImðzOj Þj2 ð2Þ

2.2. Learning using a real-coded genetic algorithm

The training of the multi-layer quantum neural network is
carried out by searching for the optimal parameters θm

k;j, δj
m and λjm

that minimize the following cost function:

JðwÞ ¼ 1
2
∑
p
∑
j
fudj ðpÞ�uNNj

ðw; pÞg2 ð3Þ

where udj is the teaching signal for the j-th neuron of the p-th
pattern. Moreover, vector w is composed of the parameters θm

k;j, δj
m

and λjm (m¼ I, H, and L).
The real-coded genetic algorithm [17] is a powerful algorithm

used to solve real parameter optimization problems of multi-
modality, parameter dependency and ill-scale. We utilize it to find
the vector w that minimizes the cost function JðwÞ. Thus, the
values of the parameters of w are directly used as the gene
parameters of an individual. The real-coded genetic algorithm is
composed of a multi-parental crossover and a generation alterna-
tion model. For the multi-parental crossover, we use a real-coded
ensemble crossover, which is a generalization of the unimodal
normal distribution crossover. In particular, to avoid the asymme-
try and bias of children distributions, the multi-parental crossover
operation is assigned a probability distribution. In the real-coded
ensemble crossover, new individuals (children), ωc , are generated
using multi-parental individuals, ωi (i¼ 1;2;…;NþK , where N is
the dimension of the problem, K is defined in the range ½1;Np�N�
and Np is the number of population), as follows:

ωc ¼ωgþ ∑
NþK

i ¼ 1
ξiðωi�ωgÞ ð4Þ

here ωg indicates the centre of gravity of the parents, and ξi is a
stochastic variable that follows the probability distribution
φð0;s2

ξÞ, where s2
ξ ¼ 1=ðNþKÞ. The generation alternation model

used is the just generation gap model, which replaces parents with
children in every generation. The fitness function is defined by the
reciprocal of the cost function JðwiÞ, where i denotes the number of
individuals.

2.3. Learning-type direct controller using quantum neural networks

To apply the quantum neural network to control systems, we
use gain and shift factors to convert the outputs of the quantum
neural network from the range [0, 1] into the range [umin, umax];
uj ¼ c0ðuNNj

�u0Þ, where u is the control input, c0 is the gain factor
and u0 is the shift factor.

In general, two types of training are used in control systems:
adaptive and learning. Adaptive training is a real-time process in
which the plant/quantum neural network achieves the desired
outputs within one trial. Learning training is an off-line process in
which the plant/quantum neural network approximates the
desired outputs after several trials. Because the quantum neural
network is trained by the real-coded genetic algorithm in the off-
line process, we consider a learning-type controller.

To simplify the design of the direct quantum neural network
controller, we consider the following single-input single-output
discrete-time plant as the target system to be controlled:

yðkþdpÞ ¼ Fp½yðkÞ;…; yðk�npþ1Þ;uðkÞ;…;uðk�mp�dpþ1Þ� ð5Þ
where y is the plant output, u is the plant input, np and mp are the
plant orders, k is the sampling number, dp is the dead time of the
plant and FpðÞ is a function that expresses the plant dynamics. The
plant output y(k) depends on the past plant inputs and outputs.
The plant orders determine the period for which the plant output
depends on them. This period is typically shorter than the trial
period. Our design is based on the following assumptions: the
upper limit of the orders and the dead time of the plant are

K. Takahashi et al. / Neurocomputing 134 (2014) 159–164160

Download English Version:

https://daneshyari.com/en/article/410050

Download Persian Version:

https://daneshyari.com/article/410050

Daneshyari.com

https://daneshyari.com/en/article/410050
https://daneshyari.com/article/410050
https://daneshyari.com

