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a b s t r a c t

In Nonnegative Matrix Factorization (NMF), a nonnegative matrix is approximated by a product of lower-rank
factorizing matrices. Quadratic Nonnegative Matrix Factorization (QNMF) is a new class of NMF methods
where some factorizing matrices occur twice in the approximation. QNMF finds its applications in graph
partition, bi-clustering, graph matching, etc. However, the original QNMF algorithms employ constant
multiplicative update rules and thus have mediocre convergence speed. Here we propose an adaptive
multiplicative algorithm for QNMF which is not only theoretically convergent but also significantly faster
than the original implementation. An adaptive exponent scheme has been adopted for our method instead of
the old constant ones, which enables larger learning steps for improved efficiency. The proposed method is
general and thus can be applied to QNMF with a variety of factorization forms and with the most commonly
used approximation error measures. We have performed extensive experiments, where the results
demonstrate that the new method is effective in various QNMF applications on both synthetic and real-
world datasets.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nonnegative Matrix Factorization (NMF) has attracted a lot of
research effort in recent years (e.g. [1–6]). NMF has a variety of
applications e.g. in machine learning, signal processing, pattern
recognition, data mining, and information retrieval (e.g. [7–11]).
Given an input data matrix, NMF finds an approximation that is
factorized into a product of lower-rank matrices, some of which
are constrained to be nonnegative. The approximation error can be
measured by a variety of divergences between the input and its
approximation (e.g. [6,12–14]), and the factorization can take a
number of different forms (e.g. [15–17]).

In most existing NMF methods, the approximation is linear
with respect to each factorizing matrix, that is, these matrices
appear only once in the approximation. However, such a linearity
assumption does not hold in some important real-world problems.
A typical example is graph matching, when it is presented as
a matrix factorizing problem, as pointed out by Ding et al. [18].
If two graphs are represented by their adjacency matrices A and B,
then they are isomorphic if and only if a permutation matrix P can
be found such that A�PBPT ¼ 0. Minimizing the norm or some
other suitable error measure of the left-hand side with respect to

P, with suitable constraints, reduces the problem to an NMF
problem. Note that both adjacency matrices and permutation
matrices are nonnegative, and the approximation is now quadratic
in P.

Another example is clustering: if X is a matrix whose n columns
need to be clustered into r clusters, then the classical K-means
objective function can be written as [19] J 1 ¼ TrðXTXÞ� TrðUT

XTXUÞ where U is the ðn� rÞ binary cluster indicator matrix. It was
shown in [20] that minimizing J 2 ¼ ‖XT �WWTXT‖2Frobenius with
respect to an orthogonal and nonnegative matrix W gives the
same solution, except for the binary constraint. This is another
NMF problem where the approximation is quadratic in W .

Methods for attacking this kind of problems are called Quad-
ratic Nonnegative Matrix Factorization (QNMF). A systematic study
on QNMF was given by Yang and Oja [21], where they presented a
unified development method for multiplicative QNMF optimiza-
tion algorithms.

The original QNMF multiplicative update rules have a fixed
form, where an exponent in the multiplying factor in these rules
remains the same in all iterations. Despite its simplicity, the
constant exponent corresponds to overly conservative learning
steps and thus often leads to mediocre convergence speed.

Here we propose new multiplicative algorithms for QNMF to
overcome this drawback. We drop the restriction of constant
exponent in multiplicative update rules, which relaxes the updates
by using variable exponents in different iterations. This turns out
to be an effective strategy for accelerating the optimization while
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still maintaining the monotonical objective decrease. The accel-
eration for Projective NMF, a special case of QNMF, was presented
in our preliminary work [22]. In this paper we demonstrate that
the new method can bring improvement for many other QNMF
optimizations. We generalize the adaptive multiplicative algo-
rithm for a wide variety of QNMF problems. In addition to
Projective Nonnegative Matrix Factorization, we also apply the
strategy on two other special cases of QNMF, with corresponding
application scenarios in bi-clustering and estimation of hidden
Markov chains. Extensive empirical results on both synthetic and
real-world data justify the efficiency advantage by using our
method.

In the following, Section 2 recapitulates the essence of the QNMF
objectives and their previous optimization methods. Section 3
presents the fast QNMF algorithm by using adaptive exponents. In
Section 4, we provide empirical comparison between the new
algorithm and the original implementation on three applications
of QNMF. Section 5 concludes the paper.

2. Quadratic nonnegative matrix factorization

Nonnegative matrix factorization (NMF) finds an approximationbX to an input data matrix XARm�n:

X � bX ¼ ∏
Q

q ¼ 1
FðqÞ: ð1Þ

and some of these matrices are constrained to be nonnegative. The
dimensions of the factorizing matrices F ð1Þ;…; FðQ Þ are m� r1; r1
�r2;…; rQ �1 � n, respectively. Usually r1;…; rQ �1 are smaller than
m or n.

In most conventional NMF approaches, the factorizing matrices
F ðqÞ in Eq. (1) are all different, and thus the approximation bX as a
function of them is linear. However, there are useful cases where
some matrices appear more than once in the approximation. In
this paper we consider the case that some of them may occur
twice, or formally, F ðsÞ ¼ F ðtÞ

T
for a number of non-overlapping

pairs fs; tg and 1rsotrQ . We call such a problem and its
solution Quadratic Nonnegative Matrix Factorization (QNMF)
because bX as a function is quadratic to each twice appearing
factorizing matrix.1

When there is only one doubly occurring matrix W in the
QNMF objective, the general approximating factorization form is
given by [21]

bX ¼ AWBWTC; ð2Þ
where the products of the other, linearly appearing factorizing
matrices are merged into single symbols. QNMF focuses on the
optimization over W , while learning the matrices that occur only
once can be solved by using the conventional NMF methods of
alternative optimization over each matrix separately [11].

As stated by the authors in [21], The factorization form unifies
many previously suggested QNMF objectives. For example, it
becomes the Projective Nonnegative Matrix Factorization (PNMF)
when A¼ B¼ I and C ¼ X [17,20,23–25]. If X is a square matrix and
A¼ C ¼ I, the factorization can be used in two major scenarios if
the learned W is highly orthogonal: (1) when B is much smaller
than X, the three-factor approximation corresponds to a blockwise
representation of X [26,27]. If B is diagonal, then the representa-
tion becomes diagonal blockwise, or a partition. In the extreme
case B¼ I, the factorization reduces to the Symmetric Nonnegative
Matrix Factorization (SNMF) bX ¼WWT [16]. (2) When X and B are

of the same size, the learned W with the constraint WTW ¼ I
approximates a permutation matrix and thus QNMF can be used
for learning order of relational data, for example, graph matching
[18]. Alternatively, under the constraint that W has column-wise
unitary sums, the solution of such a QNMF problem provides
parameter estimation of hidden Markov chains (see Section 4.3).

The factorization form in Eq. (2) can be recursively applied to
the cases where there are more than one factorizing matrices
appearing quadratically in the approximation. For example, the
case A¼ CT ¼U yields bX ¼ UWBWTUT , and A¼ B¼ I; C ¼ XUUT

yields bX ¼WWTXUUT . An application of the latter example is
shown in Section 4.2, where the solution of such a QNMF problem
can be used to group the rows and columns of X simultaneously.
This is particularly useful for the biclustering or coclustering
problem. These factorizing forms can be further generalized to
any number of factorizing matrices. In such cases we employ
alternative optimization over each doubly occurring matrix.

It is important to notice that quadratic NMF problems are not
special cases of linear NMF [21]. In linear NMF, the factorizing
matrices are different variables and the approximation error can
alternatively be minimized over one of them while keeping the
others constant. In contrast, the optimization of QNMF is harder
because matrices in two places vary simultaneously, which leads
to higher-order objectives. For example, given the squared Frobe-
nius norm (Euclidean distance) as approximation error measure,
the objective of linear NMF ‖X�WH‖2F is quadratic with respect to
W and H, whereas the PNMF objective ‖X�WWX‖2F is quartic with
respect to W . Minimizing such a fourth-order objective with the
nonnegativity constraint is considerably more challenging than
minimizing a quadratic function.

3. Adaptive QNMF

The difference between the input matrix X and its approximationbX can be measured by a variety of divergences. Yang and Oja [21]
presented a general method for developing optimization algorithms
with multiplicative updates for QNMF based on α-divergence,
β-divergence, γ-divergence or Rényi divergence. These families
include the most popular used NMF objectives, for example, the
squared Euclidean distance (β¼1), Hellinger distance (α¼0.5), χ2-
divergence (α¼2), I-divergence (α-1 or β-0), dual I-divergence
(α-0), Itakura-Saito divergence (β-�1) and Kullback-Leibler
divergence (γ-0 or r-1). Multiplicative update rules can be
developed for more QNMF objectives, for example the additive
hybrids of the above divergences, as well as many other unnamed
Csiszár divergences and Bregman divergences.

In general, the multiplicative update rules take the following
form:

Wnew
ik ¼Wik

ðATQCTWBT þCQTAWBÞik
ðATPCTWBT þCPTAWBÞik

� θ
" #η

; ð3Þ

where P, Q , θ, and η are specified in Table 1. For example, the rule
for QNMF X �WBWT based on the squared Euclidean distance
(β-1) reads

Wnew
ik ¼Wik

ðXWBT þXTWBÞik
ðWBWTWBT þWBTWTWBÞik

" #1=4

: ð4Þ

Such multiplicative learning rules have the essential advantage
that matrix W always stays nonnegative. Note especially the role of
the exponent η in the algorithms. The value given in the table
guarantees that the objective function will be non-increasing in the

1 Though equality without matrix transpose, namely F ðsÞ ¼ FðtÞ , is also possible,
to our knowledge there are no corresponding real-world applications.
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