
Mobile robots' modular navigation controller using spiking
neural networks

Xiuqing Wang a, Zeng-Guang Hou b,n, Feng Lv a, Min Tan b, Yongji Wang c

a Hebei Normal University, Shijiazhuang 050031, PR China
b State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, The Chinese Academy of Sciences, Beijing 100190, China
c Laboratory for Internet Technologies, State Key Laboratory of Computer Science, Institute of Software, The Chinese Academy of Sciences,
Beijing 100190, China

a r t i c l e i n f o

Article history:
Received 10 March 2013
Received in revised form
30 June 2013
Accepted 24 July 2013
Available online 24 January 2014

Keywords:
Mobile robot
Spiking neural networks
Modular navigation controller
Target-approaching
Obstacle-avoidance
Wall-following

a b s t r a c t

Autonomous navigation plays an important role in mobile robots. Artificial neural networks (ANNs) have been
successfully used in nonlinear systems whose models are difficult to build. However, the third generation
neural networks – Spiking neural networks (SNNs) – contain features that are more attractive than those of
traditional neural networks (NNs). Because SNNs convey both temporal and spatial information, they are more
suitable for mobile robots' controller design. In this paper, a modular navigation controller based on promising
spiking neural networks for mobile robots is presented. The proposed behavior-based target-approaching
navigation controller, in which the reactive architecture is used, is composed of three sub-controllers: the
obstacle-avoidance SNN controller, the wall-following SNN controller and the goal-approaching controller. The
proposed modular navigation controller does not require accurate mathematical models of the environment,
and is suitable to unknown and unstructured environments. Simulation results show that the proposed
transition conditions for sub-controllers are feasible. The navigation controller can control the mobile robot to
reach a target successfully while avoiding obstacles and following the wall to get rid of the deadlock caused by
local minimum.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Navigation of mobile robots refers to planning a path with
obstacle avoidance to a specified goal and to execute this plan based
on sensor readings and deduction in an unknown, uncertain and
unstructured environment. The autonomous navigation plays an
important role in mobile robots for fulfillment of given tasks [1].

Traditionally, mobile robots' navigation control requires accurate
environmental models, and is effective only in structured environ-
ments. Besides, the traditional navigation controller can only fulfill
some simple, repetitive tasks, and the robots are usually controlled to
follow planned paths. It is very difficult to build mathematical models
of unknown and unstructured environments, so the design of mobile
robots' navigation controller in such circumstances is very difficult.
Since neural networks (NNs) are useful tools for modeling and control
of nonlinear systems, some NNs-based controllers for mobile robots
have been developed successfully [2–15]. The new trend for mobile
robot's controller designing is that some classical methods for con-
trollers are usually combined with artificial neural network (ANN)
methods [12–15].

Many studies have shown that the neurons in the mammalian
brain use spikes, which are short electrical pulses, to communicate

with other neurons. Those spike sequences can represent spatio-
temporal information, and lead to a new type of neural network –

spiking neural network (SNN). In SNNs, spiking neurons are employed
to represent spatio-temporal information with pulse coding, like real
neurons do. SNNs represent more plausible models of real biological
neurons than those traditional ones. Besides that spiking neurons can
be used to compute and communicate.

Some scholars believe that ANNs have developed from the first
generation of artificial neural networks which consist of McCulloch–
Pitts threshold neurons, the second-generation neurons which use
continuous activation functions to compute their output signals, to
the third generation – spiking neural networks (SNNs) [16].

SNNs, which use individual spike times to convey information,
have stronger computational power than traditional neural networks
(NNs). Besides that, SNNs can not only approximate arbitrary contin-
uous functions, but also simulate any feed forward sigmoidal neural
networks [17]. Because spikes are conveyed in SNNs, SNNs have better
robustness to noise than other types of NNs. Moreover spikes can be
modeled relatively easily by digital circuits, so SNNs are suitable to
be realized by hardware. In addition, SNNs also show their good
capabilities in pattern recognition and classification [18–29]. The
approach used by Natschläer and Ruf [18] gives rise to a biologically
plausible algorithm for finding clusters in a high-dimensional input
space using SNN, even if the environment is changing constantly.
In [23] new spiking neural network architecture and its corresponding
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learning procedures are presented to perform fast and adaptive multi-
view visual pattern recognition.

Because of the attractive features of SNNs, many people are
involved in the research of SNNs, and new results are constantly
obtained. Various spiking neuron models are built, such as spike
response model (SRM model), dynamic firing threshold model,
leaky integrated-and-fire (LIF) neuron model, probabilistic spiking
neuron model (PSNM). The LIF neuron model is the most famous
and widely used model to simulate the SNNs. PSNM is a novel
spiking neuron model, which has good robustness. There is a
rigorous computational model, the liquid state machine (LSM),
and there are some novel SNNs architecture: evolving SNNs, spike
pattern association neuron (SPAN) architecture, the neurogenetic
brain cube (NeuCube) architecture. SPAN is capable of learning
input–output spike pattern association and output the desired
spike train [26]. NeuCube is a novel evolving spiking model and it
is used for modeling brain data specifically.

The training algorithms of SNNs can be categorized into the
unsupervisedmethods and the supervisedmethods. The unsupervised
spike-based learning methods include long-term potentiation (LTP)
learning, long-term depression (LTD) learning, learning spike-based
Hebbian learning and spike-timing-dependent plasticity (STDP). The
supervised spike-based methods include statistical learning methods,
spikePropmethod [50], evolutionary methods, linear algebra methods,
spike-based supervised-Hebbian learning (Remote Supervised Method
ReSuMe) [21], SPAN method [26], and so on.

SNNs have been employed in the robotic area successfully, such
as path planning [37], environment perception [28,29], and robots'
behavior controllers [30–40].

Because SNNs convey temporal and spatial information, they can
be used for “real” dynamic environments. While mobile robots
always work in the unstructured and dynamic environments, SNNs
are more suitable for robots' controller design than the traditional
ANNs. The research team led by Prof. Floreano has done a lot of work
on robots' controllers and they use genetic algorithm to optimize the
weights and the structure of the SNNs [33,34]. In recent years there
are also many new research results for robots' controllers based on
SNNs: Gamez et al. [41,42] propose iSpike – a Cþþ library that
interfaces between spiking neural network simulators and the iCub
humanoid robot. iSpike converts the robot's sensory information into
input spikes for the neural network simulator, and the output spikes
from the network are decoded into motor signals to control the
robot. Andre et al. [43] present a novel learning rule based on spike-
timing-dependent plasticity for the designed SNNs which allows the
SNNs to serve as a brain-like controller for the simulated robots
successfully. Luque et al. [44–46] put forward a cerebellumlike
spiking neural network which stores the corrective models as well-
structured weight patterns distributed among the parallel fibers to
Purkinje cell connections to achieve accurate control of non-stiff-
joint robot-arm. The SNNs-based robot-arm controller can accom-
plish the given task fluently and has better robustness against noise.
Alnajjar et al. [47] have designed a novel hierarchical adaptive
controller, which is based on SNNs, for a real mobile robot with
the goal of optimal navigation in dynamic environments. In [48],
a three-layered spiking neural network with STDP learning rules as
a target approaching controller for robots is used by Paolo et al.

In this paper, a behavior based target-approaching controller
using spiking neural networks is designed. The modular naviga-
tion controller has three sub-controllers, and the sub-controllers
are partially based on the previously designed obstacle-avoidance
controller [30] and the wall-following controller [32].

This paper is organized as follows: Section 2 presents the
mobile robot Casia-I's kinematical model and its sensor system.
Section 3 discusses the proposed modular navigation controller
based on spiking neural networks. Section 4 presents the simula-
tion results. The paper is concluded in Section 5.

2. Kinematic model and sonar system of the mobile robot

2.1. The kinematic model

In this study, the mobile robot as shown in Fig. 1 is a system
satisfying the nonholonomic constraints. In 2-dimensional Carte-
sian space, the pose of the mobile robot q is represented by

q¼ ðx; y; αÞT ; ð1Þ
where ðx; yÞT is the position of the robot in the reference coordinate
system XOY, and the heading direction α is taken counterclockwise
from the positive direction of the X-axis. XrOrYr is the coordinate for
the robot system. ðxt ; ytÞ is the coordination of the target for the
mobile robot's navigation. The angle ϕ is taken counterclockwise
from the positive direction of the Xr-axis to xxt. The angle ψ is taken
counterclockwise from the positive direction of the X-axis to xxt. The
solid line rectangle represents the camera, and the dashed line
rectangles represent the robot's driving wheels and the guided
wheel. If Δt is small enough, the mobile robot's trajectory can be
approximated by the following equation from t to tþmΔt:

xðmþ1Þ ¼ xðmÞþv cos ðαðmÞÞΔt
yðmþ1Þ ¼ yðmÞþv sin ðαðmÞÞΔt
αðmþ1Þ ¼ αðmÞþωðmÞΔt;

8><
>: ð2Þ

where m is an integer and m¼ 1;2;…; ½1=Δt�.

2.2. The mobile robot's sonar sensor system

Ultrasonic sensors have been widely used in mobile robots
because of its attractive properties, e.g. cheapness, reliability and so
on. The mobile robot Casia-I used in our experiment has a peripheral
ring of 16 evenly distributed Polaroid ultrasonic sensors, which are
denoted by S1–S16. The sonar sensor system is shown in Fig. 2.

3. Modular navigation controller based on spiking neural
networks

There are many different kinds of behavior-based controllers.
According to the various given tasks, the entire task module can be
divided into the goal task module and the sub-goal task module. By
various classification standards, the behaviors of the mobile robots
can not only be classified into the planned behaviors and the reactive
behaviors, but also be classified into combined behaviors and basic
behaviors. In this paper, the combined behaviors or the target-
approaching behaviors have been divided into several sub-goal
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Fig. 1. Mobile robot's pose.
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