
GPU-based biclustering for microarray data analysis
in neurocomputing

Benben Liu, Yao Xin, Ray C.C. Cheung n, Hong Yan
Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR, China

a r t i c l e i n f o

Article history:
Received 11 March 2013
Received in revised form
6 June 2013
Accepted 25 June 2013
Available online 14 January 2014

Keywords:
Biclustering
Microarray
High Performance Computing (HPC)
Graphics Processing Unit (GPU)

a b s t r a c t

Biclustering is one of the important techniques in neurocomputing and bioinformatics. Geometric
Biclustering (GBC) algorithm is used to find the common patterns in given microarray data for neural
processing. A microarray can produce a massive amount of data and require high computational power
for data analysis. With intrinsic parallel architecture and appropriate mapping technique Graphical
Processing Unit (GPU) has the advantage of processing large number of threads and data compared to
CPU. This paper analyzes the parallelism and data reuse of the GBC algorithm, and presents three
different efficient implementations using five benchmarks from real world. The proposed GPU-based
GBC program achieves significant speedup over highly optimized CPU program. By comparing
implementation results, the paper studies how to design a scalable architecture for mapping the GBC
and other similar algorithms that deal with microarray data analysis. The paper also explores how
GPU-based GBC is affected by the input data size.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Neurocomputing is a kind of computing using the models that
simulate nerve system, such as artificial neural networks and
machine learning systems. The basic component of a human
nerves system is a neuron. Typically humans have billions of
neurons working in parallel, asynchronous and distributed fash-
ion. By using these models, brain-like computing can be achieved
to fulfill aim of embedding intelligence into machines such as
computers and microprocessor chips, so it is becoming increas-
ingly important in various areas.

Clustering is a data classification process that partitions the
data according to a number of criteria in order to discover the
patterns that exist in the dataset. Biclustering is a simultaneous
clustering technique to identify patterns on both row and column
dimensions of the data matrix based on both properties and
features [1]. It has been widely used in many different application
domains such as biomedical research [2], finance [3] and image
processing [4].

Biclustering is an essential area in neurocomputing applica-
tions. For example, some applications of genetic algorithms (GAs)
in microarray deal with biclustering. In [5] GAs are employed by
integrating a greedy algorithm as a local search in order to
improve the quality of biclustering. In [6] Mitra and Banka analyze
the relationship between gene expression level variation over time

of a transcription factor and that of its target in the framework of
evolutionary biclusters. A simple and novel correlation-based
approach is employed to automatically extract gene interaction
networks from biclusters in microarray data [7].

In addition, biclustering is an important technique for neural
information processing [8] and biological dataset analysis [2]. It has
been widely studied in research [9–12]. Besides, biclustering is
employed to investigate gene data related to many diseases. For
example, cancer can be identified based on tissue classification [13].
Genes with similar expression patterns may result in close biological
behaviors, so a lot of research has been devoted into this interesting
area. Therefore, it is of great importance to develop efficient algo-
rithms for solving biclustering problems. However, there are usually
a huge number of data involved, and biclustering is an NP-complete
problem which requires either large computation power or heuristic
method to reduce computational complexity [14].

Geometric biclustering (GBC) algorithm [15] is developed to
reduce the computational complexity which identifies the linear-
ities of microarray in a high dimensional space of biclustering
algorithm. It provides results with higher accuracy than other
methods. In order to further speedup the GBC algorithm, a
hypergraph partitioning method [16] uses a software partition
tool called hMetis [17] to reduce the size of matrix in each
operation. It is still quite time consuming to identify patterns in
a large microarray. Therefore, High Performance Computing (HPC)
system is essential to accelerate this process.

Nowadays, Graphic Processing Unit (GPU) is commonly used in
HPC systems. It is able to process a large amount of data in parallel
to reduce the total running time. In this system General-Purpose
GPU (GPGPU) works as a coprocessor to accelerate algorithms

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.neucom.2013.06.049

n Corresponding author.
E-mail addresses: benben.liu@my.cityu.edu.hk (B. Liu),

yaoxin2-c@my.cityu.edu.hk (Y. Xin), r.cheung@cityu.edu.hk (R.C.C. Cheung),
h.yan@cityu.edu.hk (H. Yan).

Neurocomputing 134 (2014) 239–246

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2013.06.049
http://dx.doi.org/10.1016/j.neucom.2013.06.049
http://dx.doi.org/10.1016/j.neucom.2013.06.049
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.06.049&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.06.049&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.06.049&domain=pdf
mailto:benben.liu@my.cityu.edu.hk
mailto:yaoxin2-c@my.cityu.edu.hk
mailto:r.cheung@cityu.edu.hk
mailto:h.yan@cityu.edu.hk
http://dx.doi.org/10.1016/j.neucom.2013.06.049


which are computationally intensive. By using GPU we can achieve
higher performance per unit die size. At the same time, compared
with traditional programming mapping algorithms to GPU
requires sophisticated technique in order to obtain high speed.
In this paper, we propose a GPU-based GBC algorithm that can be
also applied to other algorithms for microarray data analysis. The
proposed algorithm is scalable with the size of benchmarks and
GPU resources, and can be efficiently implemented in parallel. The
algorithm is implemented on a CUDA-enabled GPU and it achieves
significant speedup as well as high memory bandwidth. Specifi-
cally, the key contributions of this paper are

1. analyzing the parallelism and data reuse feature of the geo-
metric biclustering algorithm;

2. proposing three efficient implementations of the geometric
biclustering (GBC) algorithm on GPU platform using five bench-
marks from real world; and

3. exploring the relationship between memory access, control
flow, input data size, CPU-GPU communication, and accelera-
tion over CPU.

This paper is organized as follows. Section 2 describes the
background and related work. Section 3 introduces the geometric
biclustering algorithm and analyzes its parallelism and data reuse
possibility. Section 4 presents the three efficient implementations
on GPU. Section 5 shows the results and comparison of the
implementations. Section 6 discusses the important consideration
that limits the speedup. Section 7 concludes the paper and
proposes the future work.

2. Background

In data analysis, response patterns are often identified from
microarray data matrix [18] in order to detect disease subpheno-
types, predict disease progression and activities of new com-
pounds [13]. Biclustering is a simultaneous clustering technique

on both row and column dimensions of the data matrix [1].
Biclustering is a data mining technique that can extract patterns
from microarray data matrix according to certain criteria. Besides,
it can be also formulated in multidimensional data space [2].
Biclustering can detect five coherent patterns [14] including
(a) constant value in the entire pattern, (b) constant values in
columns, (c) constant values in rows, (d) additive coherent values,
and (e) multiplicative coherent values. These five patterns are
shown in Fig. 1.

Since biclustering is an NP-complete problem, it is very slow to
compare over tens of thousands of data patterns. For small
simulated benchmark such as a 100 by 100 matrix, it will take
more than 2 min to identify the biclusters using the hypergraph
partitioning method processed with a Matlab program which runs
on a PC with an Intel Core i7-920 2.66 GHz processor and DDR3
3GB memory according to our experimental test. A normal gene
matrix, however, typically has more than 10,000 rows or columns,
so it is necessary to explore the use of high performance comput-
ing (HPC) platforms to accelerate the GBC algorithms.

GPUs have a parallel throughput architecture that emphasizes
executing many concurrent threads simultaneously, rather than
executing a single thread very quickly. Compute Unified Device
Architecture (CUDA) is a parallel computing architecture devel-
oped by NVIDIA, which is accessible to software developers
through variants of industry standard languages like C/Cþþ .
It has a great advantage over shading language when performing
general-purpose computation. The architecture of CUDA is shown
in Fig. 2. We can find from the figure that CUDA consists of a
number of streaming multiprocessors (SM) and each SM is
composed of many streaming processors (SP) which is also known
as CUDA cores. The device C/Cþþ code is first compiled into PTX
code, which is then allocated by thread execution manager to SMs,
further to SPs. Each SM owns fast on-chip shared memory for all
the SPs inside and all the SMs share data through huge global
memory. Given one or more thread blocks to execute, an SM
partitions them into groups of 32 parallel threads called warps
which get scheduled by a warp scheduler for execution. Besides,

C4C3C2C1 C4C3C2C1

6
6

6

C4C3C2

6

6
C1 C4C3C2C1 C4C3C2C1 C4C3C2C1

C4C3C2C1 C4C3C2C1 C4C3C2C1 C4C3C2C1

6
6

6
6

6

6
6

6
6

6

6
6

6
6

6

4
4

4
4

4

5
5

5
5

5

6
6

6
6

6

7
7

7
7

7

5
4

6
7

3

5
4

6
7

3

5
4

6
7

3

5
4

6
7

3

3
2

4
5

1

6
4

8
10

2

12
8

16
20

4

24
16

32
40

8

6
5

7
8

4

7
6

8
9

5

3
2

4
5

1

4
3

5
6

2

(Ci = Cj)
Constant rows

(Ci = Cj = constant)
Constant pattern

(Ci = constant_1,
Cj = constant_2)

Constants columns

(Ci = Cj + constant)
Additive coherent values

(Ci = Cj * constant)
Multiplicative coerent

Fig. 1. The five types of patterns in biclustering.

B. Liu et al. / Neurocomputing 134 (2014) 239–246240



Download English Version:

https://daneshyari.com/en/article/410061

Download Persian Version:

https://daneshyari.com/article/410061

Daneshyari.com

https://daneshyari.com/en/article/410061
https://daneshyari.com/article/410061
https://daneshyari.com

