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a b s t r a c t

In this paper, we propose a new online non-linear feature extraction method, called the incremental two-
dimensional kernel principal component analysis (I2DKPCA), not only to reduce the computational cost
but also to provide good feature representation. Batch type feature extraction methods such as principal
component analysis (PCA) and two-dimensional PCA (2DPCA) require more computational time and
memory usage, as they collect the entire training data to extract the basis vectors. Also, these linear
feature extraction methods could not effectively represent the non-linear distribution of input data.
Therefore, by adopting a non-linear kernel approach with chunk concept, the KPCA and 2DKPCA can
effectively address the non-linear feature representation problem by adaptively changing the feature
spaces. However, this kernel approach requires more computational time for processing images
with high dimensional input data. In order to solve these problems, we combined the 2DKPCA with
incremental learning for (1) solving the non-linear problem and (2) reducing the memory usage with
computational time. In order to evaluate the performance of I2DKPCA, several experiments have been
performed using well-known face and object image databases.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Feature extraction is one of the most important processing
steps in pattern recognition [1], as it allows high-dimensional
image data to be represented by low-dimensional feature vectors.
The principal component analysis (PCA) is a well-known feature
extraction and data representation technique widely used in the
areas of pattern recognition, computer vision and signal proces-
sing [2]. Sirovich and Kirby first used PCA to efficiently represent
human faces [3,4]. Studies related to PCA have extended this
process in many ways, resulting in algorithms such as two-
dimensional PCA (2DPCA), incremental PCA (IPCA), kernel PCA
(KPCA), etc. [8,9,11].

Conventionally, a 2-D face image is transformed into a 1-D
face image vector in the column or row direction to apply the
PCA. Thus, Zhang and Zhou proposed a 2DPCA method to
alleviate the large computational load in dealing with a large
covariance matrix [7]. The size of the covariance matrix in the
2DPCA method is smaller than that found in conventional PCA,
since 2-D images are not required to be converted to a 1-D
vector. Moreover, they showed that 2DPCA has better recogni-
tion accuracy for several face databases than conventional PCA
[8,9]. However, the PCA and 2DPCA could not effectively repre-
sent non-linear distribution of input data. In order to solve the

non-linear problem, various approaches with regards to kernel
functions have also been extensively studied as extensions to the
PCA [4,5]. In KPCA, samples are mapped to a high-dimensional
kernel space to convert the non-linear distribution of input data
into a linear distribution of input data before conducting the PCA
[5,6]. By combining 2DPCA with the kernel approach, Zhang et al.
[10] proposed the 2DKPCA method based on the 2DPCA. How-
ever, the kernel method has the following two disadvantages:
First, this approach is not efficient in real-time practical systems
because the conventional KPCA uses the entire data set with
heavy computational load as the data are provided sequentially
in small chunks. Second, when a new sample is given, the
conventional KPCA method needs to refer to the previously
acquired entire data set to update the eigenvectors. As a result,
it requires a large amount of memory usage because all of the
previously acquired input data are needed to extract new feature
spaces. In order to solve this problem, an incremental KPCA
(IKPCA) algorithm was proposed by Ozawa et al. [11], whereby
the eigenspace is updated using only the new input data without
previously acquired data. But, the learning time of IKPCA
increases by adding new sample data because the conventional
IKPCA is easy to increase the feature dimension. By combining
the advantages of both the 2D approach with kernel functions
and incremental learning, we develop a new incremental two-
dimensional kernel principal component analysis (I2DKPCA)
method for 2-D input data, which requires less computation
time than the conventional IKPCA and a smaller memory usage
than the conventional 2DKPCA.
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The rest of this paper is organized as follows. In Section 2, we
describe the proposed incremental feature extraction algorithm
called I2DKPCA. Then, we present the performance evaluation of
the proposed I2DKPCA on a face recognition system in Section 3.
Finally, we draw our conclusions in Section 4.

2. Incremental two-dimensional kernel PCA (I2DKPCA)

First, we briefly introduce the batch type linear feature extraction
method such as PCA and 2DPCA. Then, we discuss kernel functions to
enhance the non-linear feature representation ability of KPCA and
2DKPCA. Finally, we introduce the incremental feature extraction
methods such as IKPCA and the proposed I2DKPCA.

2.1. Family of batch type PCA methods

2.1.1. Linear feature extraction methods
The conventional PCA is a simple way to effectively reduce the

feature dimension [2]. Suppose there are N training data samples
vector xs ðs¼ 1;2;…;NÞ converted from image data denoted by
m�n matrix where m and n are the number of row and column in
an image. The covariance matrix of PCA is given as follows:

Q ¼ 1
N

∑
N

s ¼ 1
ðxs�cÞðxs�cÞT ð1Þ

where c is the mean vector of entire training data which is
calculated by c¼ ð1=NÞ∑N

s ¼ 1x
s: Eigenvalue problem of conven-

tional PCA using covariance matrix Q is given by

Qz¼ zλ ð2Þ
By solving this eigenvalue problem and projecting the data

onto eigenvectors z, data can be reduced into small feature
dimension. To extend PCA, 2DPCA algorithm considers two-
dimensional data [8]. Suppose there are N training data samples
Xs ðs¼ 1;2;…;NÞ each of which is denoted by an m by n matrix,
Xs consists of n column vectors xsj ðj¼ 1;…;nÞ: of size m by 1

Xs ¼ ½xs1;…; xsn� ð3Þ
The covariance matrix of 2DPCA for the column-direction is

given as follows:

Q ¼ 1
N
∑n

j ¼ 1∑
N
s ¼ 1ðxsj �cjÞðxsj �cjÞT

¼ 1
N
∑N

s ¼ 1ðXs�cÞðXs�cÞT ð4Þ

where N is the number of training data samples and
c¼ ð1=NÞ∑N

s ¼ 1X
s: It is the same notation as PCA. The eigenvalue

problem of conventional 2DPCA is then obtained in the same way
as PCA.

2.1.2. Non-linear feature extraction methods such as KPCA and
2DKPCA

The KPCA algorithm uses kernel to map high-dimensional space
[5]. Suppose there are N training data samples xs ðs¼ 1;2;…;NÞ;
where xs is an (m�n)�1 dimensional vector. We express the
kernel function for mapping the vector data as ϕðdÞ and ΦðdÞ for
matrix of data. The training data in a high-dimensional feature
space is denoted as

ΦðXÞ ¼ ½ϕðx1Þ;…;ϕðxNÞ� ð5Þ
where ϕ(xs) is a mapping function, xs is the sth data and Φ is the
matrix of mapped data. The covariance matrix of KPCA is given as
follows:

Q ¼ 1
N
∑N

s ¼ 1ðϕðxsÞ�cÞðϕðxsÞ�cÞT ð6Þ

However, computing (6) will require a very high computational
load. So we simply calculate kernel using kðx; yÞ ¼ 〈ϕðxÞ;ϕðyÞ〉
where 〈U ; U 〉 is indeed an inner product [17]. To avoid the explicit
mapping, the trick is to use learning algorithms that only require
dot products between the vectors of training data, and choose the
mapping such that these high-dimensional dot products can be
computed within the original space by means of a kernel function.
Calculating the eigenproblem of KPCA is similar to the conven-
tional PCA algorithm.

In the conventional KPCA method, a kernel-induced mapping
function maps the data vector from the original input space to a
higher or even infinite dimensional feature space. Suppose there
are N training two-dimensional data samples Xs ðs¼ 1;2;…NÞ;
each of which is denoted as an m by n matrix. The image data in a
high-dimensional feature space is denoted as

ΦðXsÞ ¼ ½ϕðxs1Þ;…;ϕðxsnÞ� ð7Þ

where jðxsj Þ is a mapping function and xsj is the jth column vector of
the sth image xsj . The column wise covariance matrix of 2DKPCA is
given as follows:

Q ¼ 1
N
∑N

s ¼ 1ðΦðXsÞ�cÞðΦðXsÞ�cÞT ð8Þ

where N is the number of 2D-samples and c¼ ð1=NÞ∑N
s ¼ 1ΦðXsÞ.

Eigenproblem of conventional PCA is calculated as

Qz¼ zλ ð9Þ
where z is the matrix of eigenvectors and λ is the vector of
eigenvalues. The eigenspace is obtained by solving the eigenvalue
problem as done in the conventional PCA using the covariance
matrix Q. Practically, however, this calculation is hardly ever
carried out because the number of dimensions in the feature
space is generally very high and could possibly be infinite. To avoid
the explicit calculation in the feature space, the so-called “kernel
trick” is applied.

Without loss of generality, we can assume that a set of r linearly
independent samples fϕðD1Þ;…;ϕðDrÞg ðrr ðN � nÞÞ in (10) spans
the space for N � n training samples obtained from n column
vectors of each image

zi ¼ ½ϕðD1Þ;…;ϕðDrÞ�
αi1
⋮
αr1

2
64

3
75¼Φrαi ð10Þ

where αi ¼ ½αi1;…; αr1�T ði¼ 1;…; rÞ is a coefficient vector and
independent sample Di; denoted by ½D1;…;Dr �; is obtained by
selecting independent vectors from all the column vectors such as

½ϕðx11Þ;…;ϕðx1nÞ;…;ϕðxNn Þ;…;ϕðxNn Þ�:

Using Algorithm l, we can find independent sample D from all
column vectors.

Algorithm 1. Calculating independent columns

D’½∅�
Y’½ϕðx11Þ;…;ϕðx1nÞ;…;ϕðxNn Þ;…;ϕðxNn Þ�
r’0
while Y is not empty
randomly select one column Yj

H’Φð½DYi�Þ
if rankðHÞ is independent

D’½DYi�
r’rþ1

end if
Yj’½ϕ�

end while

Y. Choi et al. / Neurocomputing 134 (2014) 280–288 281



Download English Version:

https://daneshyari.com/en/article/410066

Download Persian Version:

https://daneshyari.com/article/410066

Daneshyari.com

https://daneshyari.com/en/article/410066
https://daneshyari.com/article/410066
https://daneshyari.com

