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a b s t r a c t

The Nonlinear Autoregressive model with Exogenous inputs (NARX) has been utilized in many dynamic
systems with complicated nonlinearities. Since NARX models can employ past values of time series as
inputs, it is possible to estimate the property of hysteresis to Shape Memory Alloys (SMAs). The innovation
of this paper lies in the development of a creative Jordan-plus-Elman NARX recurrent neural network
(Jordan–Elman network) model as well as its training procedure. In this paper, the proposed model is
applied to an ultra-thin SMA wire with a diameter of 0.001 in., which can be actuated/heated by an electric
current. Experimental results demonstrate that the Jordan–Elman network dramatically improves the
modeling error (mean squared error) in comparison with a Jordan NARX neural network. In addition, with
good generalization results, the proposed model successfully identifies and estimates the hysteretic
behavior of the ultra-thin SMA wire including major loops and minor loops at various frequencies.

& 2014 Published by Elsevier B.V.

1. Introduction

Shape Memory Alloys (SMAs), such as NiTi-based alloys, have
been used as one of the most promising smart actuators in many
engineering applications including civil [1], mechanical [2], bio-
medical [3], aerospace [4], etc. SMAs can exhibit two major
properties, the shape memory effect and pseudoelasticity. The
shape memory effect is based on the transition between two solid
phases: the martensite phase for relative low temperatures, and
the austenite phase for relative high temperatures. This property
can be utilized to generate force or motion by electrically heating
the material. Pseudoelasticity refers to the ability of the material
in a relatively high temperature to accommodate strains of this
magnitude during loading, and then recover upon unloading
without permanent deformations.

SMAs in wire form have been commonly used in many appli-
cations, since they are generally the least expensive and most
readily available from [5,6]. The distinctly non-uniform strain and
temperature fields have great implications on the performance,
reliability and controllability of practical devices. Due to the
difficulty in accurately controlling the martensite–austenite pro-
portion, SMAs have traditionally been used as “on–off” electro-
mechanical actuators. The main difficulty of controlling SMAs is
caused by the hysteretic behavior. Without a proper pre-defined
memory or some similar algorithm, the controller should not be

sufficient to compensate the hysteresis. Researchers have devel-
oped some advanced control methods by using inverse models of
SMAs based on the corresponding mathematical model for the
thermo-mechanical behavior covering hysteresis [7], as it has been
done for some other hysteretic materials [8]. However, good
models for phase transitions are very difficult to obtain precisely.

The dynamic behavior of SMAs has been of great interest for
actuator applications. Thus, the simulation of the SMA-actuator
response (e.g. time, frequency) is highly reasonable as it facilitates
and supports the design layout process. Due to the complexity of
the material behavior and the limited experimental basis, the
development of constitutive models for SMAs has been hampered
for many years. Although researchers have been studying the
constitutive models for the characterization of the SMA [9–12],
these methods are mostly simplified in order to enable their
solvability. Therefore, Artificial Neural Networks (ANNs), as a
nonlinear approach, can be appropriately trained to learn the
SMAs0 hysteretic behavior from experimental data, and to provide
a forward control algorithm through its inverse model [13].

Since an Artificial Neural Network (ANN) with at least one
hidden layer has been successfully proven to universally approx-
imate arbitrary bounded non-constant functions [14], it has been
successfully applied to many applications of prediction and mod-
eling in areas such as financial [15], biomedical [16], engineering
[17], communication [18], etc. Normally, a regular feedforward
neural network only contains time series of inputs in the input
layer, and predicts an output from the output layer. Some non-
linear behaviors, especially non-mapping, such as hysteresis, are
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normally difficult to estimate. By using advanced neural networks,
researchers have developed many approaches to model hysteretic
behaviors for various smart materials including piezoelectric [19]
and SMAs [20]. Also, recurrent neural networks (RNNs) with
hysteretic transfer functions have been introduced to model
piezoelectric actuators [21]. RNNs have proven to be universal
approximators in state space model forms [22]. Jordan networks
and Elman networks are two major types of recurrent neural
networks for modeling dynamic systems. The Jordan networks
have information fed back from the output layer whereas the
Elman networks use feedback from the hidden layer. Their
structures make them suitable for representing various types of
nonlinear dynamic systems, and thus many applications have been
utilizing these two types of networks. Researchers have presented
a Jordan network based NARX neural network model to capture
the unknown dynamics of brain activities [23]. An innovative
approach to model nonlinear complex systems based on internal
RNNs as well as their modified backpropagation algorithms has
been proposed [24]. Since Recurrent Neural Networks (RNNs) are
very complex, normally the training and learning process may take
a long period.

In this paper, two experimental modeling methods are intro-
duced to estimate the time response of an ultra-thin SMA wire in
the presence of hysteresis: one is a Jordan NARX recurrent neural
network (Jordan network) model, and the other is an innovative
Jordan-plus-Elman NARX RNN (Jordan–Elman network) model. A
creative learning procedure is proposed to effectively compose a
convergent RNN model and efficiently reduce the training time.

This paper is organized as follows. Section 2 describes the
modeling methodology of three types of RNN NARX models:
series–parallel model Jordan NARX network, parallel mode Jordan
NARX network and Jordan-plus-Elman NARX network as well as
the associated training procedures. Section 3 presents the experi-
mental setup in Smart Material and Structure Laboratory, Uni-
versity of Houston to verify the effectiveness of the proposed
modeling methodology. Section 4 compares the experimental
results with modeling simulation results, and discusses the results
for various modeling methodology. Section 5 provides a conclu-
sion and potential application for future work.

2. Modeling methodology

In this section, three recurrent network structures will be
introduced: the series–parallel mode Jordan NARX networks, the

parallel mode Jordan NARX networks and the Jordan-plus-Elman
NARX networks. Each network structure will be presented and
discussed in the following subsection, and the experimental
results can be found in Section 4.

The Nonlinear Autoregressive model with Exogenous inputs
(NARX) is a commonly used discrete nonlinear system that can be
mathematically represented as

yðkÞ ¼ f fuðk�1Þ; uðk�2Þ; …; uðk� lÞ;
yðk�1Þ; yðk�2Þ; …; yðk�mÞg; ð1Þ
where uðkÞAℝ and yðkÞAℝ denote the inputs and the outputs of
the NARX model at the discrete time step, k, respectively. lZ0 and
mZ0 are the input memory and the output memory used in the
NARX model. The unknown function f ðU Þ, that is generally non-
linear, can be approximated, for instance, by a regular multilayer
feedforward network. The resulting model architecture is called a
NARX network or Jordan NARX network. A powerful class of
dynamical models has been shown to be computationally equiva-
lent to Turing machines [25]. Due to its complex structure,
concerned in training the Jordan NARX network, two modes are
introduced: the series–parallel mode and the parallel mode.

2.1. Series–parallel mode Jordan NARX network (Jordan-SP)

The network structure of the series–parallel mode Jordan NARX
network (Jordan-SP) is presented in Fig. 1. v1; v2; …; vn are the
neurons in the hidden layer; W ðiÞ is the weight matrix from the
input layer to the hidden layer and W ðoÞ is the weight vector from
the hidden layer to the output layer.

The structure is a regular Feedforward Neural Network (FNN)
structure, in which the output0s regressor is formed only by the
actual data of the system0s output:

ŷðkÞ ¼ f fuðk�1Þ; uðk�2Þ; …; uðk� lÞ;
dðk�1Þ; dðk�2Þ; …; dðk�mÞg; ð2Þ
where dðkÞ is the desired or actual output data and ŷðkÞ is the
network0s estimated output at the time step, k. The state of the
p-th neuron and its output are defined as

xpðkÞ ¼ ∑
lþmþ1

q ¼ 1
W ðiÞ

pquqðkÞ; ð3Þ

vpðkÞ ¼ f ðxpðkÞÞ ð4Þ
where the subscripts stand for the index of the element in a vector
or a matrix, W ðiÞ

pq is the weight connecting the q-th input and the
p-th neuron in the hidden layer. Then the output of the network is

yðkÞ ¼ ∑
n

p ¼ 1
W ðoÞ

p vpðkÞ ð5Þ

In this paper, the hyperbolic tangent sigmoid function, as
shown in (6), is applied to the hidden layer and the linear function
is applied to the output layer.

f ðxÞ ¼ 2
1þe�2x�1 ð6Þ

Since the motivation is to let the neural network model track
the desired outputs, the cost function, in which the Mean Squared
Error (MSE) method is utilized in this paper, should be minimized
between the desired outputs and the network0s estimated output.
Thus, the cost function for N steps is

J ¼ 1
N

∑
N

k ¼ 1
ðŷðkÞ�dðkÞÞ2; ð7Þ

which is a function of W ðiÞ and W ðoÞ.
In the training process, for example, by using the Levenberg–

Marquardt backpropagation algorithm [26,27], error functions in

Fig. 1. Network structure of series–parallel mode Jordan NARX network.
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