
Letters

How spurious correlations affect a correlation-based measure of spike
timing reliability

Jan A. Freund a,b,n, Alexander Cerquera c

a Theoretical Physics/Complex Systems Research Group, ICBM, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
b Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
c Faculty for Electronic and Biomedical Engineering, Complex Systems Research Group, Antonio Nariño University, Bogotá, Colombia
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a b s t r a c t

The spike timing reliability of a neuron can be assessed via measuring the similarity of spike trains

obtained in trials with repeated presentations of the same stimulus. Using a correlation-based measure

of spike timing reliability we show that spurious correlations between independent Poisson spike trains

can lead to a systematic misinterpretation to an extent that scales with the neural spike rate. Therefore,

a correction is essential before comparing neurons with distinctly different spike rates. Such a

comparison may, for instance, guide the choice of stimulus selective sensory neurons that are pooled

for optimal stimulus reconstruction. We propose straightforward methods to abstract from these

spurious correlations and demonstrate effects in an application to recorded spike trains of a retinal

ganglion cell population.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Neurons transmit information about a stimulus via spike trains.
The specific way stimulus features shape these spike trains is the
essence of a neural code. In theoretical approaches to neural coding
[1–3] two dichotomies play a prominent role: rate code vs. spike
timing code and single unit code vs. population code. Rate codes are
robust against spike jitter and shuffling of spikes but a rather
inefficient way of coding [4], in particular for short evaluation times.
By contrast, the in principle high information capacity of spike timing
codes is limited by the variability of spike trains observed in response
to repeated presentations of the same stimulus. Spike jitter as well as
additional or missing spikes are caused by neuronal noise and have
the effect of limiting spike timing reliability.

The dichotomy of single unit vs. neural populations gains
importance for fast coding strategies, i.e. when stimulus features
have to be reconstructed within a short time span allowing at
most one spike per neuron to be elicited. Under such circum-
stances a single unit rate estimate must necessarily be highly
unreliable. On the contrary, a population rate is less prone to
estimation errors because of mitigating ensemble statistics. How-
ever, many redundant neurons would be needed to suppress

statistical fluctuations sufficiently which makes this short-time
population rate code highly inefficient [4]. An improvement is
achieved by evaluating the timing (or just the rank-order [5]) of
all those spikes across the population which are triggered by the
stimulus. Admittedly, in a single trial situation stimulus-induced
spikes cannot be easily separated from spontaneous spikes.
However, in trials with repeated presentations of the same
stimulus a significant similarity of spike trains across the trial
ensemble can be seen as an indication of a stimulus selective
neuron. It is evident that stimulus selectivity is beneficial for
stimulus reconstruction. Therefore, the task to build optimal sub-
populations means to separate stimulus selective neurons from
non-selective ones. A constructive way to reach this goal is to
assess stimulus selectivity of each neuron by measuring its
reliability, i.e. the spike train similarity of the repeated trial
ensemble, and then rank and threshold the population with
respect to this measure (cf. the discussion in Section 5).

Several measures of spike train similarity exist, e.g. [6–11].
Paiva et al. [12] reported a comparison of binless spike train
measures. Using measures without binning the time axis avoids
boundary effects due to quantization of spike trains and is
favorable for estimation. In the same publication three of these
binless measures, Victor’s and Purpura’s spike train metrics [6],
van Rossum’s distance [7] and Schreiber et al.’s correlation
measure, were put in a unifying perspective through a formula-
tion via different kernel functions. Notwithstanding the fact that
these methods are binless the kernel width introduces a
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smoothing parameter that controls the importance of spike
timing precision.

Here we want to point out that in a comparative spike train
reliability analysis of neurons with different rates the choice of
this kernel width strongly influences the level of statistical
significance which can be seen as a kind of bias. Statistical
significance comes into play when assessing the reliability value
observed for a specific neuron against the backdrop of spurious
correlations occurring in reference ensembles of spike trains that
are constructed in accordance with a null-hypothesis. In the case
of comparatively short observation times that we have in mind
the reference ensemble will be given by Poisson spike trains of a
(constant) firing rate identical to the related estimate of the
analyzed neuron. Generalizations to longer spike trains will be
discussed in Section 6. Our presentation will be focused on
Schreiber et al.’s correlation measure, however, the mentioned
unifying perspective offered by the kernel function approach
allows to anticipate similar statements for other spike train
measures.

Starting from a binned version of the correlation measure
(Section 2) we address the effect of spurious correlation arising in
stationary Poisson spike train ensemble and combine numerical
results (Section 3) with an analytical approximation (Section 4).
A similar approach for the binless formulation is thinkable but
will be left to future research. The essential point is that non-
removal of the bias caused by spurious correlations can lead to an
inappropriate assessment of neural populations and, conse-
quently, to a non-optimal subpopulation. This will be illustrated
by application to real data from a set of retinal ganglion cells
(Section 5). Finally, we summarize and discuss implications and
generalizations of our findings (Section 6).

2. The correlation-based measure

We assume that N spike trains were recorded from a single
neuron subjected to repeated presentations of the same stimulus.
The method proposed by Schreiber et al. [8] proceeds as follows:

� A spike train, characterized by the sequence of M spike times
t1, . . . ,tM , is convoluted (smoothed) with a Gaussian filter of
temporal width sc yielding the signal

sðtÞ ¼
XM
i ¼ 1

1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

c

p exp �
ðt�tiÞ

2

2s2
c

 !
: ð1Þ

The parameter sc must be chosen by the experimenter and
should match the estimated temporal timing precision of
spikes. Therefore, it is characteristic for a specific (type of)
neuron.
� Binning: the time-continuous signal fsðtÞ90rtrTg is then

converted to a vector ~s ¼ ðs1, . . . ,sK Þ by choice of a bin width
Dt and by the definition of the k-th vector component as the
mean value

sk ¼
1

Dt

Z kDt

ðk�1ÞDt
sðtÞ dt for k¼ 1, . . . ,K : ð2Þ

Here the number K of vector components is related to the bin
width Dt and the total observation time T by K ¼ bT=Dtc

(where b. . .c indicates the nearest smaller integer). Choosing
Dtosc makes the integrand in (2) a mildly varying function.
Hence, for any 0ryr1, sk ¼ sð½k�y�DtÞ is an equally valid
choice. In all of our calculations we fixed Dt¼ 1 ms, the
shortest interspike interval reflecting absolute neuronal refrac-
tory time. Such a small bin width substantially reduces
quantization effects, even more so, since binning is performed
after smoothing.

� Performing the first two steps for each of the N spike trains
yields a set of vectors f~s1, . . . ,~sNg. Each of these vectors can be
imagined as an arrow in a K-dimensional space. Reliable spike
responses correspond to a bunch of N arrows pointing in the
same direction. This however means that the set of angles
between all possible pairs of arrows is scattered around zero
or, equivalently, that the related average cosine is close to one.
The mathematical expression for this average cosine is

R¼
2

NðN�1Þ

XN�1

i ¼ 1

XN

j ¼ iþ1

~si �~sj

9~si99~sj9
: ð3Þ

Notice that 0rRr1 because all vector components are non-
negative which means that the angle between an arbitrary pair of
vectors ~si and ~sj never exceeds the range ½�ðp=2Þ,p=2�. We note
that the sum in (3) is mathematically ill-defined if it contains a
pair with 9~si9¼ 0 or 9~sj9¼ 0 (or both). This reflects the impossi-
bility to define an angle if (at least) one of the two vectors is the
null vector. Since the numerator of (3) balances only non-vanish-
ing segments of smoothed spike trains we choose to define

~si �~sj

9~si99~sj9
¼ 0 if 9~si9¼ 039~sj9¼ 0: ð4Þ

As pointed out by Schreiber et al. [8] R accounts for the similarity
of spike trains and, contrary to PSTH-based measures, is sensitive
to slow variations in firing rate across cell trials.

3. Spurious correlations between independent Poisson spike
trains

The use of the correlation-based measure (3) as a measure of
spike timing reliability is justified whenever the quantified
similarity of spike trains is beyond the accidental similarity of
statistically independent spike trains. However, because of the
non-negativity of the correlation-based measure spurious corre-
lations reflecting such accidental similarities must necessarily be
reflected by positive values. Therefore, these positive deviations
from zero constitute a kind of bias that should be excluded from
considerations of spike timing reliability.

To see how the bias statistics depends on the spike rate a of
the neuron and on the choice of parameters we consider an
ensemble of independent Poisson spike trains. These are con-
structed by concatenation of interspike-intervals ti chosen inde-
pendently according to

ti ¼

ln
1

xi

� �
a

, ð5Þ

where xi is a random number equidistributed in the unit interval.
We thus generate a sequence of independent ISIs that are
exponentially distributed, i.e.

pðtÞ ¼ ae�at: ð6Þ

Both mean and standard deviation of the ISI distribution are given
by a�1 which, therefore, is the characteristic time scale of the
neuron. In Fig. 1 we show an ensemble of 10 independent spike
trains that results from concatenation of such ISIs together with
the signal traces resulting from the Gaussian filter.

When comparing the spike timing reliability of a population of
neurons with vastly different spike rates one is left with two options:

A: use of the correlation-based measure (3) with a population specific

constant sc. This choice is reasonable if from physiological
considerations the spike timing precision is identical for all
neurons of the population, notwithstanding the fact that they
might possess significantly varying spike rates. In case no such
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