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a b s t r a c t

During the last few years, multiple surface classification (MSC) algorithms, such as projection twin
support vector machine (PTSVM), and least squares PTSVM (LSPTSVM), have attracted much attention.
However, there are not any modifications of them that have been presented to handle nonlinear
classification. This motivates the rush towards new classifiers. In this paper, we formulate a nonlinear
version of the recently proposed LSPTSVM for binary nonlinear classification by introducing nonlinear
kernel into LSPTSVM. This formulation leads to a novel nonlinear algorithm, called nonlinear LSPTSVM
(NLSPTSVM). Additionally, in order to promote its generalization capability, we also extend the recursive
leaning method, used for further boosting the performance of PTSVM and LSPTSVM, to the nonlinear
case. Experimental results on synthetic datasets, UCI datasets and NDC datasets show that NLSPTSVM
has better classification capability.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Support vector machine (SVM) [1,2], as an effective kernel based
learning algorithm, has been successfully applied to pattern classi-
fication and regression estimation like face detection [3], drug
discovery [4] and time series prediction [5]. Instead of employing
empirical risk minimization principle like conventional artificial
neural networks, SVM implements structural risk minimization
principle to achieve better generalization ability [6]. The central
idea of SVM is to find an optimal separating hyperplane which is
defined as the one giving maximum margin between the positive
and negative training samples that are closest to the hyperplane
[6,7].

Multisurface proximal support vector machine via generalized
eigenvalues (GEPSVM) [8], as a novel variant of SVM, does binary
classification by generating two nonparallel hyperplanes, one for
each class. In this approach, each hyperplane, which is closest
to the samples of its own class and furthest from the samples of
the other class, is determined by solving the eigenvector corros-
ponding to a smallest eigenvalue of a generalized eigenvalue
problem. The new datapoints are assigned to a class based on its
proximity to one of the two hyperplanes.

Twin support vector machine (TSVM) [9], similar in spirit to
GEPSVM, seeks two nonparallel hyperplanes by solving two dual
quadratic programming problems (QPPs) of smaller size rather
than solving single dual QPP with all training samples in SVM.
Experimental results show the effectiveness of TSVM over SVM
and GEPSVM [9,10].

Multi-weight vector projection support vector machine (MVSVM)
[11], different from TSVM which improves GEPSVM by using SVM-
type formulation, was proposed to enhance the performance of
GEPSVM by seeking two projection weight vectors instead of two
hyperplanes for each class. In this approach, the projection weight
vectors can be found by solving a pair of eigenvalue problems, such
that the samples of one class are closest to its class mean while the
samples of different class are separated as far as possible [11].

Based on MVSVM and TSVM, projection twin support vector
machine (PTSVM) is proposed in [12]. It seeks a projection axis for
each class by solving an associated SVM-type QPP, such that the
projected samples are well separated from those of the other class
in its respective subspace. Additionally, to further boost its perfor-
mance, the authors propose a recursive procedure to generate more
than one axis for each class. Experimental results show the effective-
ness of PTSVM over TSVM and MVSVM [12]. In order to dealing with
large datasets efficiently, a least squares PTSVM (LSPTSVM) was
proposed in [13]. The solution of LSPTSVM follows directly from
solving two systems of linear equations as opposed to solving two
QPPs in PTSVM. This makes LSPTSVM be able to solve large datasets
accurately without any external optimizers [13].
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However, the authors only proposed linear algorithms both in
[12] and [13], and did not extended them to solve nonlinear
classification. In this paper, we first extend LSPTSVM to handle
nonlinear kernels whose solution also leads to systems of linear
equations. We call this method the nonlinear LSPTSVM (NLSPTSVM).
Then, in order to further boost its performance, we extend the
recursive leaning method, used for further promoting the perfor-
mance of PTSVM and LSPTSVM, to the nonlinear case.

The rest of this paper is organized as follows. In Section 2,
we give a short summary of PTSVM and LSPTSVM. NLSPTSVM is
presented and discussed in Section 3. Section 4 deals with experi-
mental results and Section 5 contains concluding remarks.

2. Brief review of PTSVM and LSPTSVM

Consider a binary classification problem in the n-dimension
real space Rn. The set of m training samples is represented by
fðxðiÞj ; yjÞji¼ 1;2; j¼ 1;2; :::;mig where xðiÞj denotes the jth training
sample corresponding to class i and m1þm2¼m, yjAf�1;1g.
We further organize the m1 samples of class 1 by a m1�n matrix
A and m2 samples of class 2 by a m2�n matrix B.

2.1. Projection twin support vector machine

The central idea in PTSVM [12] is to find a projection axis
for each class, such that within-class variance of the projected
samples of its own class is minimized meanwhile the projected
samples of the other class scatter away as far as possible. This leads
to the following two optimization problems [12]
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where c1 and c2 are both trade-off constraints, and ξk and ηk are all
nonnegative slack variables.

In order to simplify the above formulations, two within-class
scatter matrixes S1 and S2, corresponding to class 1 and class 2,
respectively, are defined as follows:
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Then Eqs. (1) and (2) can be converted to their equivalent
formulations shown as follows:
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The Wolf dual problems of Eqs. (5) and (6) have been shown
in [12] to be Eqs. (7) and (8) in terms of the Lagrangian multipliers
αARm2 and γARm1 , respectively.
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By solving the above two dual problems, Lagrangian multipliers
α and γ can be got, and then the two projection axes correspond-
ing to class 1 and class 2 can be attained by Eqs. (9) and (10),
respectively.
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for testing, the label of a new coming sample x is determined
depending on the distance between the projection of x and the
projected class mean which is expressed as
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2.2. Least squares projection twin support vector machine

Different from PTSVM, the decision function of LSPTSVM is
obtained from the primal problems directly. The primal problems
of LSPTSVM are modified versions of the primal problems Eqs. (1) and
(2) of PTSVM in least squares sense and constructed following the
idea of PSVM proposed in [14]. Different from the primal problems
Eqs. (1) and (2) with the inequality constraints, The primal problems
of LSPTSVM have only equality constraints as follows:
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