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ABSTRACT

Multi-Input Multi-Output (MIMO) regression estimation problems widely exist in engineering fields. As
an efficient approach for MIMO modeling, multi-dimensional support vector regression, named M-SVR,
is generally capable of obtaining better predictions than many traditional methods. However, M-SVR is
sensitive to the perturbation of hyper-parameters when facing small-scale sample problems, and most of
currently used model selection methods for conventional SVR cannot be applied to M-SVR directly due to
its special structure. In this paper, a fast and robust model selection algorithm for M-SVR is proposed.
Firstly, a new training algorithm for M-SVR is proposed to reduce efficiently the numerical errors in
training procedure. Based on this algorithm, a new leave-one-out (LOO) error estimate for M-SVR is
derived through a virtual LOO cross-validation procedure. This LOO error estimate can be straightway
calculated once a training process ended with less computational complexity than traditional LOO
method. Furthermore, a robust implementation of this LOO estimate via Cholesky factorization is also
proposed. Finally, the gradients of the LOO estimate are calculated, and the hyper-parameters with
lowest LOO error can be found by means of gradient decent method. Experiments on toy data and real-
life dynamical load identification problems are both conducted, demonstrating comparable results of the
proposed algorithm in terms of generalization performance, numerical stability and computational cost.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In many real-life engineering applications, nonlinear black-box
modeling based on machine learning is widely used as an effective
soft-sensing technique. Especially, it generally needs to estimate
and predict several variables or targets in the fields of system
identification and state estimation [1,2], etc. In this scenario,
system's output is a vector y e R¥(k > 1), which is called Multi-
Input Multi-Output (MIMO) regression problem [3]. It is of very
important significance to improve the precision and speed of
MIMO modeling.

The traditional solution of MIMO problem is splitting multi-
dimensional output into multiple single-dimensional outputs,
which means constructing an independent regression model for
each output dimension [4]. Although this kind of method has
simple implementation, it is computationally expensive and incap-
able of containing useful information among outputs. Another
solution is multivariate statistical regression [5]. However, this kind
of method is sensitive to the changes of data so that it cannot be
applied broadly. In present machine learning techniques, artificial
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neural network is the most common method to establish MIMO
model [6]. However, when facing small-scale sample problem, this
method easily falls into local minimum and leads to over-fitting.
Different with neural network, support vector machines (SVMs),
introduced by Vapnik [7], root from statistical learning theory, and
seek best generalization performance of decision model while
minimizing the training error especially for small-sample learning
problems. However, the conventional SVM regressions (SVRs) only
have one-dimensional output [8]. As a pioneer research, Pérez-Cruz
[9] developed an efficient multi-dimensional regression tool which
has its roots in SVM. This MIMO SVM approach, named M-SVR, has
become a promising tool for solving the problems of nonlinear
channel estimation [10] and biophysical parameter evaluation [11].
However, according to our experimental results, M-SVR is some-
what sensitive to the perturbation of hyper-parameters in some
small-scale sample problems. A little deviation of hyper-parameters
will result in large bias of prediction performance. How to choose
optimal hyper-parameters, called also model selection [12,13], is a
key problem in M-SVR applications. Generally speaking, model
selection mainly contains two key issues: generalization perfor-
mance evaluation and selection strategy. In practice, cross-
validation (CV) and leave-one-out (LOO) errors are widely used to
obtain a reliable estimate of generalization error [14]. These
methods are known to be simple and efficient but computationally
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expensive. To overcome this problem, various theoretical general-
ization error bounds for SVM were analyzed by many previous
researches [ 15-18]. Especially aiming at regression problems, Chang
[19] derived various LOO bounds, e.g., Radius-Margin Bound and
Span Bound for conventional SVM regression (SVR), and Cawley
[20] proposed another simple LOO estimate for least squares SVM
(LS-SVM). But most of these LOO bounds for conventional SVR are
hardly applicable to M-SVR due to its special form of primal
optimization. The present model selection methods for M-SVR
mainly use 8-fold cross-validation [9] or LOO error [21] to estimate
generalization performance. Obviously, M-SVR lacks a simple but
efficient generalization estimator. Moreover, because the model
selection of M-SVR needs to traverse the whole parameter space
under a certain optimization strategy, the training procedure of
M-SVR may need to compute the inverse of approximate singular
matrix when using some “seemingly bad” hyper-parameters. Per-
haps these parameters are exactly best ones in fact. Unfortunately,
they will be left out due to the unnecessary numerical errors.
Based on the above analysis, the model selection of M-SVR
needs to solve two problems: (1) how to evaluate the general-
ization ability of M-SVR model in a fast and accurate manner, and
(2) how to improve the numerical stability of M-SVR training
procedure. Inspired by [20], a fast and robust model selection
algorithm for M-SVR specific to RBF kernel is proposed in this
paper. This algorithm firstly presents a new and robust solution for
M-SVR which avoids computing the inverse of approximate sin-
gular matrix. Moreover, a simple LOO error estimate for M-SVR is
proposed in this paper to solve this problem through a virtual LOO
cross-validation procedure. This LOO estimate can remarkably
reduce computational complexity than traditional LOO method.
And an efficient implementation of this LOO estimate is also
proposed. Finally, the parameters with lowest LOO error are found
using gradient descend optimization. Experimental results on toy
and engineering data sets both show the benefit of the proposed
model selection algorithm. The rest of this paper is organized as
follows. In Section 2, a brief review to M-SVR is given. In Section 3,
a new training algorithm of M-SVR is provided. In Section 4, a
theoretical derivation about LOO error estimate of M-SVR and its
efficient implementation are both presented. Section 5 further
proposes a model selection algorithm of M-SVR based on gradient
descend optimization. Section 6 is devoted to computer experi-
ments, followed by a conclusion of the paper in the last section.

2. Brief introduction of M-SVR

The key idea of M-SVR is extending Vapnik e—insensitive loss
function to multi-dimensional output case, i.e., a hyper-spherical
insensitive zone, which handles all the outputs together. There-
fore, M-SVR can improve generalization performance of decision
model especially when only scarce samples are available. Here a
brief introduction of M-SVR will be provided as follows.

Given a set of iid. training samples {(X1,¥1),....(X, Yy} C
R? x R, M-SVR is formulated as minimization of the following
functional [10]:
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By adopting the cost function L(u) described in Egs. (2) and (3),
M-SVR is capable of finding the dependencies between outputs,
and can take advantage of the information of all outputs to get a
robust solution. As Eq. (1) cannot be solved straightforwardly, [10]
utilized an iterative method, named IRWLS, to obtain a desired
solution. By introducing a first-order Taylor expansion of cost
function L(u), the objective of Eq. (1) will be approximated by the
following equation [10]:
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and CT is constant term which does not depend on W and b, the
superscript k denotes kth iteration.

To optimize Eq. (4), an IRWLS procedure is constructed which
linearly searched the next step solution along the descending
direction based on the previous solution. According to the Repre-
senter Theorem [22], the best solution of minimization of Eq. (4) in
feature space can be expressed as W = Yh(x;)/? =<I)Tﬂ’, so the
target of M-SVR is transformed into finding best # and b. The
IRWLS of M-SVR can be summarized in the following steps [10]:

Step1: Set k=0, =0, b* = 0. Calculate u/* and a;.

Step2: Compute the solution #° and b° according to the next
equation:
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where a=[ay,...,q]", (Da);j = a;6(i—j), 1 is a column vector of I
ones, and K is kernel matrix.

Step3: Define the corresponding descending direction

Pk = [(‘{)‘f:l:’k‘;k,]. Use a backtracking algorithm to compute g**'

ji=1..Q (6)

and

b**!, and further obtain u*' and a;. Go back to Step 2 until

convergence.

The proof of convergence of the above algorithm is given in
[10]. Once convergence is reached, ﬂk“ and b are model para-
meters of jth output regressor. Because u;* and q; are calculated
using every dimension of y, each individual regressor contains the
information of all outputs, which improves the prediction perfor-
mance of M-SVR.

3. Robust implementation of M-SVR

Note that the matrix on the left-hand side in Eq. (6) is
approximate singular or not positive definite for some hyper-
parameters, which will cause large deviation when computing
model parameters f and b. In order to conduct effective model
selection, this paper will firstly improve the training procedure of
M-SVR in terms of numerical stability.

Without loss of generality, consider the jth dimensional output
independently. Denoting M =K+ Dgl, p=p.y=y, Eq. (6) turns
into the following form:
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where the first row of equation can be re-written as
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