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a b s t r a c t

In this paper, we analyze the formula of weights definition in the discrete competitive Hopfield network
(DCHOM) and point out its flaw when using it to solve some special instances of maximum clique
problem (MCP). Based on the analysis, we propose an improved competitive Hopfield network algorithm
(ICHN). In ICHN, we introduce a flexible weight definition method which excites the competitive
dynamics, and we also present an initial values setting strategy which efficiently increases the
probability of finding optimal solutions. Furthermore, an inhibitive competitive activation mechanism
is introduced to form a new input updating rule which reduces significantly the number of neurons with
an intermediate level of activations. Our algorithm effectively overcomes the flaw of the DCHOM, and
exhibits powerful solving ability for the MCP. Experiments on the benchmark problems and practical
applications verify the validity of our algorithm.

& 2013 Published by Elsevier B.V.

1. Introduction

Maximum clique problem (MCP) is a representative problem
of combinatorial optimal problem and it is also a well-studied
NP-Hard problem [13,4].This problem is computationally intract-
able even when it is used to approximate with certain absolute
performance bounds. MCP has many practical applications in
diverse fields such as computer vision, information retrieval,
cluster analysis, fault tolerance. Moreover many important pro-
blems such as maximum independent set, minimum vertex cover-
ing, quadratic zero-one problem can be easily reduced to MCP
[20]. Hence, it is becoming more and more important to find the
optimal and near-optimal solutions to MCP in practical applica-
tions and theory researches [19]. In 1992, a maximum Hopfield
network was successfully proposed by Takefuji et al. [20] and
Lee et al. [14] to handle a class of NP-complete optimization
problems, including MCP, which was often hard to solve by
neural networks. Then researchers Funabiki et al. summarized
several basic algorithms that can solve the MCP effectively [17].
In 2003, Galán et al. modeled competitive Hopfield-type neural
networks such as maximum neural network to solve MCP, and
illustrated maximum neural network using a completely synchro-
nous model that cannot guarantee energy decrease and sometimes

generates inaccurate results and oscillatory behaviors in the con-
vergence process [9]. In 2005, Wang et al. proposed a discrete
competitive Hopfield neural network which contains stochastic
dynamics to escape from local minima [22]. They applied their
improved competitive Hopfield neural network in some other
practical problems soon after, and proposed further improve-
ments [21]. These newly proposed methods validate the superior
performance of competitive mechanism in neural networks sub-
stantially through solving some well-known benchmark problems.
Sequently, Yi et al. proposed a shrinking chaotic maximum neural
network, which also applied the flexibility of competitive property
of maximum neural network and chaotic dynamics sufficiently, to
solve MCP [24]. Most of the conventional neural networks funda-
mentally utilize gradient descent dynamics, while Chen and Aihara
proposed a transient chaotic neural network (TCNN) [7,8] based on
the continuous Hopfield neural network (CHNN) for combinational
optimization problems [6]. TCNN is a better algorithm than the
other algorithms only with gradient descent dynamics, which was
analyzed and improved to solve MCP in 2009 [23]. But it is difficult
to balance the chaotic dynamics and gradient descent dynamics
to converge to a stable equilibrium point corresponding with
an acceptably near-optimal solution [11]. Compared with chaotic
dynamics, competitive mechanism displays more effective intrin-
sic characteristics to help neural network escape from local
minima. In 2008, a neuro-GA approach using a maximum neural
network, along with the chaotic mutation capability of genetic
algorithms, was proposed to solve the reduced maximum clique
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problem [1]. Sequently, the neuro-GA algorithm was used to solve
maximum fuzzy clique problem [3]. Moreover, evolutional algo-
rithm is an important kind of powerful method to solve combi-
natorial optimization problems. Recently, a reactive evolutionary
algorithm with guided mutation (EA/G), named R-EVO, is pro-
posed as a typical evolutional method to solve MCP [5].

In this paper, based on the analysis of the weights definition
in discrete competitive Hopfield network (DCHOM), an intrinsic
flaw is pointed out when we are using it to solve some special
instances of the MCP. Furthermore, we propose an improved
competitive Hopfield network algorithm (ICHN), and introduce
a flexible weight definition method to excite the competitive
dynamics of the ICHN. For increasing the successful probability
of finding optimal solutions, an initial values setting strategy is
introduced into the ICHN, and an inhibitive competitive activation
mechanism is embedded into neuron updating functions to reduce
significantly the number of neurons with intermediate level of
activations. The ICHN effectively overcomes the flaw of original
maximum neural network, and exhibits powerful solving ability
for MCP. Simulation results show that the ICHN has superior ability
for the MCP through solving well-known benchmark problems
and practical problems (MCP in community detection) within a
reasonable number of iterations.

2. Maximum neuron model for MCP

Let G¼ ðV ; EÞ be an arbitrary undirected graph, where V ¼
f1;…;ng is the vertex set of G and EDV � V is the edge set of
G. A¼ ðaijÞn�n is the adjacency matrix of G, where aij¼1 if ði; jÞAE
and aij¼0 if ði; jÞ=2E. The complement graph of G¼ ðV ; EÞ is the
graph G ¼ ðV ; EÞ, where (EÞ ¼ fði; jÞ=i; jAV , ia j and ði; jÞ=2Eg. Given a
subset SDV , we call GðSÞ ¼ ðS; E \ S � SÞ the subgraph induced
by S. A graph G¼ ðV ; EÞ is complete if all its vertices are pairwise
adjacent, that is, 8 i; jAV , ði; jÞAE. A clique C is a subset of V such
that G(C) is complete. The MCP requires a clique that has the
maximum cardinality.

Based on the previous researchers' works, [20,14] formulate the
MCP problem as a global minimization of the function

E¼ ∑
n

x ¼ 0
∑
n

y ¼ 0
∑
2

i ¼ 1
txyvxivyi ð1Þ

subject to the constraints ∑2
i ¼ 1vxi ¼ 1 for x¼ 0;1;…;n, where

vxiAf0;1g, and v01 ¼ 1 determinately. The weight matrix is defined
by

t0i ¼ ti0 ¼
1
4

∑
n

j ¼ 1
aij�1

 !

tii ¼ 0; tij ¼ tji ¼ 1
4aij 8 ia j; i; j¼ 1;…;n: ð2Þ

In this formulation, the first step in solving the MCP is to construct
a graph GM by adding a vertex 0 to G (the complement graph of G).
And tij represents the weight of an edge between vertices i; j. Fig. 1
shows a simple graph G with 6 vertices and 10 edges and the
graph GM. The maximum clique of G contains vertices #2, #3,
#5 and #6. The second step is to minimize the summation of
the weights whose vertices belong to the same partition set,
where VM is partitioned into V þ ¼ fx=vx1 ¼ 1; vx2 ¼ 0g correspond-
ing to the vertices in the clique and V� ¼ fx=vx1 ¼ 0; vx2 ¼ 1g
corresponding to the vertices not included in the clique.

Galan et al. presented that maximum neural network using
completely synchronous model cannot guarantee energy decrease
and sometimes generates inaccurate results and oscillatory beha-
viors in the convergence process. However, they just illustrated
the oscillatory behavior of parallel maximum neural network for
MCP, the critical factor of weight setting was not revealed in detail.

Moreover, due to lacking the influence of neurons' delicate
adjustment in their discrete model, the initial values become a
very important factor to affect the solution quality and conver-
gence speed. Thus in our algorithm we consider these inferior
situations generally and propose effective methods to overcome
these disadvantages.

3. The proposed algorithm for MCP

In the competitive network model for the MCP, as the added
vertex #0 connects with all the other vertices, it directly influences
the whole network competitive process. In the convergence pro-
cess, v01 is always set as 1, which drives those vertices connected
with vertex #0 to get saturation to 1 tentatively and gradually.
And v02 drives other vertices to saturate to 0 gradually. Similarly,
the competition between vx1, vx2, …, and vxmðx¼ 1;…;nÞ pro-
duces powerful searching ability for the neural network to
solve some special combinatorial optimization problems such as
N-Queen problem and channel assignment problem, especially
when the competitive group vxiði¼ 1;…;mÞ has adaptive numbers
of vertices.

The weight definition of vertex #0 is a crucial factor determin-
ing the competitive intensity of neural networks. However, for
a large number of MCP instances, the original weight defini-
tion function in Eq. (2) cannot guarantee that neural networks
obtain powerful competitive activation to search optimal solutions
regrettably. Hence either in completely synchronous model or
asynchronous model, the competitive Hopfield networks using
Eq. (2) are easy to get convergence to local minima. Here we give a
simple example to show the flaw of weight definition Eq. (2)
specifically in competitive neural networks for the MCP. Let us
consider two simple graphs in Fig. 2. The weight matrices gotten

Fig. 1. (a) A graph G and (b) the constructed graph GM.
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Fig. 2. (a) A graph with four vertices and (b) a graph with six vertices.
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