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a b s t r a c t

In the previous methods of community detection, unipartite networks and bipartite networks are dealt
with separately, so the type of network should be known in advance. This paper presents a vertices
similarity probability (VSP) model to find community structure without the priori knowledge of the type
of complex network structure. As vertices in the same community have similar properties, the VSP model
uses vertices similarity to find community structure which is a unified algorithm and can be used in any
network without knowing the type of network structure. As “Common neighbor index” has been proved
to be an effective index for vertices similarity, it is used to measure the vertices similarity probability.
Then, we give the method to determine the number of communities using matrix perturbation theory.
We apply the model to find community structure in real-world networks and artificial networks. The
experimental results show that the VSP model is applicable to both unipartite networks and bipartite
networks, and is able to find the community structure successfully without using the type of network
structure.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Attention has been devoted to the computational analysis of
complex networks [1–4], as part of the recent surge of research on
large, complex networks. Although complex networks, such as
social networks and biological networks, have different properties.
They have a common feature, namely “community structure”.
Communities, also known as clusters or modules, are groups of
vertices which could share common properties and/or have similar
roles within the graph [5]. Finding community structure and
clustering vertices in the complex network is the key to learning
a complex network topology, to understanding complex network
functions, to founding hidden mode, to link prediction, and to
evolution detection. Many practical application results have got-
ten: Spirin et al. revealed the relationship between protein func-
tion and interactions inherent [6,7]; Flake et al. find the internal
relations of hyperlink and the main page [8,9]; Freeman et al.
identify the social organizations to evolve over time [10,11] and
so on.

Generally, there are two types of network structure, unipartite
networks and bipartite networks. Unipartite networks assume
that connections between the vertices in the same community
are dense, and between the communities are sparse, such as
Social network [12], biochemical network [13] and information

network [14]. Most of the community detection methods are made
for unipartite networks, and try to find communities with sparse
edges among them. However, some real networks are bipartite.
Vertices of a bipartite network can be partitioned into two disjoint
sets such that no two vertices within the same set are adjacent
[21]. In another word, edges in a bipartite network joining only
vertices of different communities, such as shopping networks [15],
people attending events network [16], plant-animal mutualistic
networks [17], scientific publication networks [18], etc. Methods
for bipartite networks try to find communities with sparse edges
inside them. Among the methods for community detection, the
type of the network must be known, because the properties of
networks are different in different types of the network structure.
The usual approach taken to detect communities in bipartite
networks is to construct a unipartite projection network of one
part of the network, and then find communities in that projection
using methods for unipartite networks. In 2007, Barer proposed a
method that can detect communities in bipartite networks directly
without the projection [21]. Generally speaking, people should
first know the type of the network, unipartite or bipartite, then
chose the corresponding method to find communities.

In the famous modularity matrix method [19,20] proposed by
Newman et al. communities are found by the spectral of mod-
ularity matrix. If the type of the network structure is known,
modularity optimization is able to find community structure
in both unipartite and bipartite networks by the maximum or
minimum eigenvalue and the eigenvetor separately. Barer propose
a BRIM [21] method which does community detection in bipartite
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networks and can determine the number of communities at
the same time. Furthermore, Barber and Clark use the label-
propagation algorithm (LPA) for community detection [22] too.
However, [21,22] cannot be used without knowing the type of
network.

In hierarchy networks, hierarchical clustering is adopted fre-
quently for community detection. Vertices are grouped into com-
munities that further subdivide into smaller communities, and so
forth, as in [19]. Clauset, Moore and Newman propose HRG [23]
using the maximum likelihood estimation to forecast the prob-
ability of connections between vertices when the organization of
vertices are known. In unipartite networks, most edges are in the
same level, and in bipartite networks, edges are between levels.
Hierarchical methods perform remarkably in clear hierarchy
network, but not so impressive under contrary circumstance.
Moreover, a hierarchical method always has high computational
complexity.

Different from traditional concept which divide network by
principle of “inside connection dense outside sparse”, stochastic
block models assume that the probability that two vertices are
connected depends on the blocks to which they belong [24], such
as the method proposed in 2009 by Roger Guimera and Marta
Sales-Pardo based on HRG. However, the assumption that vertices
in same blocks have same connection probability is not accurate.
Recently, Karrer and Newman [25] also proposed a stochastic
block model which considers the variation in vertex degree. This
stochastic block model solves the heterogeneous vertex degrees
problem and got a better result than other previous researches
without degree correction. It can be used in both types of
networks, but different types of networks should be dealt with
separately none the less.

In some cases, researchers have no priori knowledge of the
network structure. For example, when we know the interaction of
vertex in the protein network, we may have no knowledge of the
type of the network. And moreover, when we get a network which
consists of people's relationships in schools, the type of network
may not be sure. This is because that if links are between students
only, the network will be a unipartite network; or if links are
between students and teachers, the network will be a bipartite
one. An effective method which can be used for finding commu-
nity structure in both unipartite and bipartite networks requires
the knowledge of the network topology only is needed. Although
the properties of “edges” in the two types of networks are
different, vertices in the same communities should be similar
because vertices in same communities have similar properties. In
this paper, we develop a unified VSP model which is based on the
vertices similarity. Therefore, the VSP model can be used in any
type of networks as long as we put similar vertices in same
communities. The VSP model gets ideal result both by theoretical
proof and experimental analysis.

The paper is organized as follows. In Section 2, we prove that
vertices similarity theory is suitable for finding community struc-
ture. In Section 3, we present the VSP model and the method to
group network into two communities. In Section 4, we give the
method to determine the number of communities in the network.
Finally, we make the experiment in both unipartite and bipartite
network. Compared with Newman's modularity and other meth-
ods, the VSP model is an accurate unified model which can find
community structure without prior knowledge of type of the
network structure. In Section 5, we give our conclusions.

2. Vertex similarity in finding community structure

The concept of community informs that vertices in the
same community should share common properties no matter in

unipartite or bipartite network. It means that vertices in the same
community should be similar, although edges in different type
of the network structures are connected in different ways. There-
fore, we change our focus from “edges” to “vertices” for finding
communities.

Vertex similarity is widely studied by researchers in complex
network. It is sometimes called structural similarity, to distinguish
it from social similarity, textual similarity, or other similarity types.
It is a basic premise of research on networks that the structure of a
network reflects real information about the vertices the network
connects, so it is reasonable that meaningful structural similarity
measures might exist [26]. In general, if two vertices have a
number of common neighbors, we believe that these two vertices
are similar. In community detection, we assume that two similar
vertices have similar properties and should be grouped in the
same community.

Let Γx be the neighborhood of vertex x in a network, i.e., the set
of vertices that are directly connected to x via an edge. Then jΓx \
Γyj is the number of common neighbors of x and y. Common
neighbor index, Salton index, Jaccard index, Sorenson index, LHN
(Leicht–Holme–Newman) index, and Adamic–Adar index [27–31]
are five famous methods for vertex similarity. Many researchers
have analyzed and compared these methods. Liben-Nowell [32]
and Zhou Tao [33] proved that the simplest measurement
“common neighbor index” performs surprisingly well. We use
“common neighbor index” to measure the vertex similarity in our
VSP model.

Definition 1. For two vertices x and y, if there is a vertex z to be
the neighbor of x and y at the same time, we call x and y a pair,
denoted as pairðx; yÞ. z is called the common neighbor of pairðx; yÞ.

Since vertices which are in the same community have similar
properties, we assume that vertices in the same community are
similar vertices. The more similar the vertices inside a commu-
nity are the more common neighbors they have. The number of
common neighbors Nij of vertices i and j is given by

Nij ¼ jΓi \ Γjj; and Nii ¼ 0:

The sum of common neighbors with vertices in same communities
Nin is given by

Nin ¼ ∑
i;jA same
community

Nij:

And the sum of common neighbors with vertices in different
communities Nout is given by

Nout ¼ ∑
i;j =2 same
community

Nij:

Therefore, the task of maximizing the number of common neigh-
bors in the same community is to get maxðNinÞ or to get minðNoutÞ.
The sum of common neighbors in the network R is given by

R¼ 1
2
∑

i;jAn
Nij:

We define the adjacency matrix A to be the symmetric matrix
with elements Aij. If there is an edge joining vertices i and j,
Aij ¼ 1 ; if no, Aij ¼ 0. Define ai as ith vector of A, so as A can be
rewritten as A¼ ½a1; a2;…; an�. If and only if AikAkj ¼ 1, the vertex
k is a common neighbor of vertices i and j. Therefore Nij can be
rewritten as

Nij ¼∑
k
AikAkj ¼ ai � aj;

when i and j are two different vertices. As ai � aj ¼ ki, matrix N is

N¼ ATA�Λk;
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