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a b s t r a c t

In this paper, we consider a harmonic oscillator with delayed feedback. By studying the distribution of
the eigenvalues of the characteristic equation, we drive the critical values where Bogdanov–Takens (B–T)
bifurcation and zero-Hopf bifurcation occur. The versal unfoldings of the normal forms at the singularity
of B–T and a pure imaginary and a zero eigenvalue singularity are given, respectively. Some numerical
simulations verify the theoretical results.
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1. Introduction

As is known to all, second order delay differential equations arise in
a variety of mechanical, circuit system in which inertia plays an
important role, such as harmonic oscillator, van der Pol' oscillator, etc.,
and many of them are regulated by feedback which depends on the
state and the derivative of the state. Recently, the interest in studying
of nonlinear dynamical system with delay has been growing rapidly
(see [1–3,5–7,12–19] and the references therein). For example, in
[3,12,14], the authors investigate pitchfork-Hopf bifurcation and B–T
bifurcation for van der Pol's oscillator with delayed feedback, and
obtain the complete bifurcation diagram for original parameter of the
system by using the normal form method. Song et al. [16] study the
following damped harmonic oscillator with delayed feedback:

€xðtÞ þ b _xðtÞ þ axðtÞ ¼ f ½xðt�τÞ�;
and demonstrate steady-state bifurcation, B–T bifurcation, triple zero
and Hopf-zero singularities by taking the time delay as the bifurcation
parameter. In [19], taking the delay as a bifurcation parameter, the
authors study the Hopf bifurcation of the following system:

€xðtÞ þ c _xðtÞ þ kxðtÞ ¼ s1f ðxðt�τÞÞ þ s2f ð _xðt�τÞÞ; ð1Þ
where c≥0; k40 are damping and stiffness of the system, respec-
tively; τ is the time delay; s1; s2 are feedback gains, f is a nonlinear
force input function; and Campbell et al. [6,7] investigate the Hopf and
resonant codimension two bifurcation. However, there are few papers
discussing B–T and the zero-Hopf bifurcation of the harmonic oscilla-
tor model (1). This fact motivates our work for the paper. On the other
hand, zero-Hopf and B–T singularity analysis on a system is a useful

approach that can provide much information about dynamical
behavior.

For notational convenience, let x1ðtÞ ¼ xðtÞ; x2ðtÞ ¼ _xðtÞ, we can
rewrite Eq. (1) in the following form:

_x1 ðtÞ ¼ x2ðtÞ
_x2 ðtÞ ¼ �kx1ðtÞ�cx2ðtÞ þ s1f ðx1ðt�τÞÞ þ s2f ðx2ðt�τÞÞ:

(
ð2Þ

In the present paper, we always assume that the function
f satisfies the following conditions:

(H1). f∈C3ðRÞ; f ð0Þ ¼ 0.

The objective of this manuscript is to study the bifurcation of
system (1) for B–T and zero-Hopf bifurcation. In Section 2, we analyze
the distribution of the eigenvalues of corresponding transcendental
characteristic equation of its linearized equation, and obtain the critical
values for B–T and zero-Hopf bifurcation. In Section 3, we perform the
center manifold reduction and normal form computation, and derive
the normal forms with the B–T and zero-Hopf singularity for the
harmonic oscillator. In Section 4, some examples are given and
numerical simulations are performed to illustrate the obtained results.
In Section 5, we summarize our results.

2. The analysis of eigenvalues

Clearly, ð0;0Þ is always the equilibrium of Eq. (2). Linearizing Eq.
(2) at the origin yields the following system:

_x1 ðtÞ ¼ x2ðtÞ
_x2 ðtÞ ¼ �kx1ðtÞ�cx2ðtÞ þ s1l1x1ðt�τÞ þ s2l1x2ðt�τÞ;

(
ð3Þ
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where l1 ¼ f ′ð0Þ. Characteristic equation for Eq. (3) is

det
λ �1

k�s1l1e�λτ λþ c�s2l1e�λτ

" #
¼ 0:

Hence, the following second order exponential polynomial equa-
tion is obtained:

Δðλ; τÞ ¼ λ2 þ cλþ k�ðs1l1 þ s2l1λÞe�λτ ¼ 0: ð4Þ

To establish our main results, it is necessary to make the
following assumptions:

(H2) s1l1 ¼ k.

Then, we have the following lemma.

Lemma 1. Suppose that (H2) is satisfied, then

(i) if τ≠τn≔ðs2l1�cÞ=k; λ¼ 0 is a single root of Eq. (4);

(ii) if τ¼ τn and τn≠ðs2l17
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s22l

2
1 þ 2k

q
Þ=k; λ¼ 0 is a double root

to Eq. (4).

Proof. Clearly, λ¼ 0 is a root to Eq. (4) if and only if (H2) is
satisfied. Substituting s1l1 ¼ k into Δðλ; τÞ and taking the derivative
with respect to λ give

dΔð0; τÞ
dλ

¼ cþ kτ�s2l1:

For any τ40, if τ≠τn, it is easy to see that dΔð0; τÞ=dλ≠0, which
implies the conclusion of (i) follows. Furthermore, we have

d2Δð0; τÞ
dλ2

¼�kτ2 þ 2s2l1τ þ 2;

clearly, if τn≠ðs2l17
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s22l

2
1 þ 2k

q
Þ=s1l1, then d2Δð0; τÞ=dλ2≠0. This

completes the proof. □

In the following, we consider the case that Eq. (4) not only has
a zero root, but also has a pair of purely imaginary root 7 iω. Then
we make the following assumption:

(H3) s22l
2
1 þ 2k�c240.

Based on (H2), let iωðω40Þ be a root of Eq. (4) and separating
the real and imaginary parts, we have that

�ω2 þ k�k cos ωτ�s2l1ω sin ωτ¼ 0;
cωþ k sin ωτ�s2l1ω cos ωτ¼ 0;

(
ð5Þ

adding squares of two equations yields

ω2ðω2 þ ðc2�2k�s22l
2
1ÞÞ ¼ 0: ð6Þ

Clearly, Eq. (6) has a positive root if and only if (H3) is satisfied.
Furthermore, we can solve ω from above equation

ω¼ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s22l

2
1 þ 2k�c2

q
;

and from Eq. (5), we can get

cos ω0τð Þ ¼ �kω2
0 þ cs2l1ω2

0 þ k2

k2 þ s22l
2
1ω

2
0

;

then

τ¼ τj ¼
1
ω0

arccos
�kω2

0 þ cω2
0s2l1 þ k2

k2 þ s22l
2
1ω

2
0

 !
þ 2jπ

" #
:

Lemma 2 (see Ruan and Wei [9]). Consider the exponential poly-
nomial

Pðλ; e�λτ1 ;…; e�λτm Þ ¼ λn þ pð0Þ1 λn�1 þ⋯þ pð0Þn�1λ

þpð0Þn þ ½pð1Þ1 λn�1 þ⋯þ pð1Þn�1λþ pð1Þn �e�λτ1

þ⋯þ ½pðmÞ
1 λn�1 þ⋯þ pðmÞ

n�1λþ pðmÞ
n �e�λτm ;

where τi≥0ði¼ 1;2;…;m; j¼ 1;2;…nÞ are constants. As ðτ1; τ2;⋯; τmÞ
vary, the sum of the order of the zeros of Pðλ; e�λτ1 ;…; e�λτm Þ on the
open right half plane can change only if a zero appears on or crosses
the imaginary axis.

In order to obtain our main result, we make the following
assumption:

(H4). s2l1oc.

Lemma 3. All the roots of Eq. (4), except the zero root, have negative
real parts when (H2) and (H4) satisfied, and 0oτoτ0.

Proof. For τ¼ 0, Eq. (4) can be transformed into the following
form:

λ2 þ ðc�s2l1Þλþ k�s1l1 ¼ 0: ð7Þ
Since (H2) and (H4) hold, we get that the roots of Eq. (7) are
λ1 ¼ 0; λ2 ¼ s2l1�co0. Using Lemma 2, we complete the proof. □

Remark 1. If (H4) satisfied, we can easily obtain τn ¼ ðs2l1�cÞ=
ko0. Since τ≥0, then λ¼ 0 is always a single root to Eq. (4).
Therefore, B–T bifurcation and zero-Hopf bifurcation cannot
coexist.

Summarizing the discussions above, we have the following
theorem.
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Fig. 1. The bifurcation diagram in the s1�τ plane.
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