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a b s t r a c t

The sample covariance matrices in multiset canonical correlation analysis (MCCA) usually deviate from
the true ones owing to noise and the limited number of training samples. In this paper, we thus re-
estimate the covariance matrices by using the idea of fractional order embedding to respectively correct
sample eigenvalues and singular values. Then, we define fractional-order within-set and between-set
scatter matrices, which can significantly reduce the deviation of sample covariance matrices. At last, a
novel multiset canonical correlation method is presented for multiset feature fusion, called fractional-
order embedding multiset canonical correlations (FEMCCs). The proposed FEMCC method first performs
joint feature extraction on multiple sets of feature vectors that are obtained from the same objects, and
then fuse the extracted correlation features by a given fusion strategy to form discriminative feature
vectors for classification tasks. The proposed method is applied to face recognition and object category
classification and is examined using the AR, AT&T, and CMU PIE face image databases and the ETH-80
object database. Numerous experimental results demonstrate the effectiveness and robustness of the
FEMCC fusion method.

& 2013 Published by Elsevier B.V.

1. Introduction

In many practical pattern recognition applications, the same
objects are often represented in multiple different feature spaces
(views). For instance, genes can be represented by the genetic
activity feature and the text information feature [1] in bioinfor-
matics. Since multiple feature representations from the same
objects contain different characteristics and information of origi-
nal data, it is very meaningful to fuse them to form discriminative
feature vectors for classification tasks. At present, feature fusion
has become an important research focus in the fields of pattern
recognition and computer vision.

Conventional feature fusion methods, such as serial feature fusion
[2], parallel feature fusion [3–6], are performed by simply concatenat-
ing or integrating multiple feature representations together. Although
these fusion methods can improve the recognition performance to
some extent, the correlation information between different feature
sets, which has been demonstrated to be helpful information for
recognition [7,8], has not been employed in these traditional methods.
In Ref. [7], Sun et al. presented a new feature fusion method using
canonical correlation analysis (CCA) [9] that can explicitly reveal the
correlation information between two sets of features. The CCA-based
method first extracts canonical correlation features (CCFs) from two

sets of features, and then fuses these CCFs by given fusion strategies
for recognition purpose. Many experimental results on handwritten
numeral and face recognition show that the CCA-based fusion method
is more powerful in contrast with conventional fusion methods.
However, standard CCA is an unsupervised method, and thus it cannot
preserve discriminant information of training samples in low-
dimensional canonical subspaces. Later on, a variant of CCA called
generalized CCA (GCCA) [10] is developed to exploit discriminant
information in feature fusion. GCCA does not only consider the
correlation between two-set features, but also the within-class infor-
mation of training samples. The fused features are more discriminative
in handwritten numeral classification. Moreover, the method of partial
least squares (PLS) [11], which is closely related to CCA, has also been
proposed for fusion of two feature sets [12]. The basic idea of the PLS-
based fusion method is to find a pair of linear transformations such
that the covariance between the projections of two sets of feature
vectors can be maximized.

However, most of the foregoing methods can only fuse two sets
of feature vectors for classification. For more than two sets of
features, Fu et al. [8] presented a general subspace learning
framework, in which the cumulative pairwise canonical correla-
tion between each pair of feature sets is maximized after dimen-
sion normalization and subspace projection. Subsequently, Hou
et al. [13] proposed a novel feature fusion method called multiple
component analysis (MCA). In MCA, all sets of features can be
fused into a higher-order covariance tensor and then orthogonal
subspaces corresponding to each feature set are learned through
higher-order singular value decomposition (HOSVD) [14].
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Recently, a multiset integrated canonical correlation analysis
(MICCA) framework [15] is presented for feature fusion. This
method defines a new correlation criterion using generalized
correlation coefficient and fuses multiple sets of feature vectors
by given strategies to form discriminative feature vectors for
recognition tasks. Extensive experimental results on handwritten
numerals classification have demonstrated the effectiveness and
robustness of the MICCA method. Due to the lacking of supervised
information, Yuan et al. [16] further developed the discriminative-
analysis of multiset integrated canonical correlations (DMICCs),
which introduces within-class information of training samples and
improves the classification accuracy.

As a generalized extension of CCA, multiset canonical correlation
analysis (MCCA) [17] is a powerful technique for analyzing linear
relationships between multiple sets of random variables. Thus, MCCA
is very suitable for multiset feature fusion. Currently, MCCA has been
widely applied to many scientific fields, such as blind source separa-
tion [18], fMRI data analysis [19,20], remote sensing image analysis
[21], and target recognition [22]. However, in MCCA, since within-set
and between-set population covariance matrices are not known
beforehand in real-world applications, their estimates have to be
computed in a training sample space. In this case, sample covariance
matrices usually deviate from true ones due to noise and the limited
number of training samples. Meanwhile, Hendrikse et al. [23] have
pointed out that, even though sample covariance matrices are
unbiased estimates of true ones, their eigenvalues are also biased
estimates of the eigenvalues of true covariance matrices and the
leading sample eigenvalues differ greatly from the true ones if the
number of samples is of the same order as the dimensionality of data.
Clearly, the deviation has a negative effect on the learning of MCCA for
multiset feature fusion.

In this paper, we re-estimate the within-set and between-set
covariance matrices in MCCA by using the idea of fractional order
embedding to respectively correct sample eigenvalues and singular
values. Then, we define fractional-order within-set and between-set
scatter matrices, which can significantly reduce the biased estimates of
covariance matrices caused by noise and the limited number of
training samples. On this basis, a novel multiset canonical correlation
method is presented for multiset feature fusion, called fractional-order
embedding multiset canonical correlations (FEMCCs). The proposed
FEMCC method first performs joint feature extraction on multiple sets
of feature vectors that are obtained from the same objects, and then
fuse the extracted correlation features by a given strategy to form
discriminative feature vectors for classification tasks. The proposed
method is applied to face recognition and object category classification
and is examined using the AR, AT&T, and CMU PIE face image
databases and the ETH-80 object database. Many experimental results
demonstrate the effectiveness and robustness of the FEMCC method.

2. Backgrounds and related work

2.1. Canonical correlation analysis (CCA)

In CCA, given two zero-mean random vectors x∈Rp and y∈Rq,
the objective of CCA is to compute a pair of projection directions,
α∈Rp and β∈Rq, such that the correlation of canonical variates αTx
and βTy is maximized by

ρðα; βÞ ¼ EðαTxyTβÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðαTxxTαÞ⋅EðβTyyTβÞ

q ¼ αTSxyβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αTSxxα⋅βTSyyβ

q ; ð1Þ

where Eð⋅Þ denotes the notation of expectation, Sxx and Syy are,
respectively, within-set covariance matrices of vectors x and y, and
Sxy is the between-set covariance matrix between vectors x and y.
Clearly, the canonical correlation criterion in (1) is affine-invariant

to arbitrary scaling of α and β. According to this characteristic, CCA
needs to normalize canonical transformations α and β by setting

αTSxxα¼ 1; βTSyyβ¼ 1: ð2Þ
On the foregoing basis, the first pair of projection directions, α1

and β1, are computed by maximizing the criterion (1) with
constraints (2). After this, the kth pair of projection directions, αk
and βk, where 2≤k≤r and r¼ rankðSxyÞ, are found by continually
maximizing the criterion (1) with the following constraints (3).

αTSxxα¼ 1; βTSyyβ¼ 1;

αTj Sxxα¼ 0; βTj Syyβ¼ 0; ðj¼ 1;2;⋯k�1Þ:

8<
: ð3Þ

2.2. Multiset canonical correlation analysis (MCCA)

MCCA is an important technique which can analyze linear
relationships between multiple sets of random variables. At pre-
sent, MCCA has many different forms [17]. Thereinto, the following
form (i.e., standard MCCA) is a natural and direct extension of CCA.

Given m sets of zero-mean random vectors fxi∈Rdi gmi ¼ 1, a set of
projection directions fαi∈Rdi gmi ¼ 1, called multiset canonical trans-
formations (MCTs), is found to maximize the sum of pair-wise
correlations between multiset canonical variates (MCVs) fαTi xigmi ¼ 1
as

ρðα1; α2;⋯; αmÞ ¼ ∑
m

i ¼ 1
∑
m

j ¼ 1
αTi Sijαj; ð4Þ

where Sii is the within-set covariance matrix of vector xi, and
Sijði≠jÞ is the between-set covariance matrix between vectors xi
and xj.

In MCCA, multiset canonical variates are generally normalized
such that αTi Siiαi ¼ 1, i¼ 1;2;⋯;m. With these constraints, MCCA
can be formulated equivalently as

maxρðα1; α2;⋯;αmÞ ¼ ∑
m

i ¼ 1
∑
m

j ¼ 1
αTi Sijαj

s:t: αTi Siiαi ¼ 1; i¼ 1;2;⋯;m:

ð5Þ

By the Lagrange multiplier technique [17], we can obtain
the first set of projection directions from the optimization problem
in Eq. (5). Under conjugately orthogonal constraints and
fαTi Siiαi ¼ 1gmi ¼ 1, MCCA can further produce multiple sets of projec-
tion directions by maximizing the criterion function in Eq. (4).

2.3. Multiset integrated canonical correlation analysis (MICCA)

MICCA aims at finding a projection matrix for each feature
space in multiple different representations of the same patterns
such that multiset integrated canonical correlations can be max-
imized in the transformed representations.

Specifically, suppose m sets of zero-mean random vectors
xi∈R

di , i¼ 1;2;⋯;m, are given. MICCA searches for a set of projec-
tion directions αi∈R

di , i¼ 1;2;⋯;m, to maximize the generalized
correlation among the projected variables, i.e., αT1x1; α

T
2x2;⋯; αTmxm,

which can be formally written as

ρðαÞ ¼max
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�detðGðαT1x1; αT2x2;⋯; αTmxmÞÞ

‖αT1x1‖⋅‖αT2x2‖⋅⋯⋅‖αTmxm‖

s
; ð6Þ

where Gð⋅Þ denotes a Gram matrix, detð⋅Þ represents the determi-
nant of a square matrix, ‖⋅‖ is the notation of 2-norm, and
αT ¼ ðαT1 ; αT2;⋯; αTmÞ. In MICCA, ρ is referred to as multiset integrated
canonical correlation coefficient (MICCCoe) and α is called multiset
integrated canonical vector (MICVec). The kth MICCCoe is defined
by the kth set of MICVecs α1k;α2k;⋯; αmk, which are conjugately
orthogonal to the previous ones. Since there is no closed-form
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